Trescher Karola, Dzilic Elda, Kreibich Maximilian, Gasser Harald, Aumayr Klaus, Kerjaschki Dontscho, Pelzmann Brigitte, Hallström Seth, Podesser Bruno K
Department of Cardiac Surgery, LK St. Pölten, Pölten, Austria Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna Medical University, Vienna, Austria
Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna Medical University, Vienna, Austria.
Interact Cardiovasc Thorac Surg. 2015 Mar;20(3):387-94. doi: 10.1093/icvts/ivu383. Epub 2014 Dec 2.
Currently available cardioplegic solutions provide excellent protection in patients with normal surgical risk; in high-risk patients, however, such as in emergency coronary artery bypass surgery, there is still room for improvement. As most of the cardioplegic solutions primarily protect myocytes, the addition of substances for protection of the endothelium might improve their protective potential. The nitric oxide donor, S-nitroso human serum albumin (S-NO-HSA), which has been shown to prevent endothelial nitric oxide synthase uncoupling, was added to the newly developed histidine-tryptophan-ketoglutarat (HTK-N) cardioplegia in an isolated heart perfusion system after subjecting rats to acute myocardial infarction (MI) and reperfusion.
In male Sprague-Dawley rats, acute MI was induced by ligation for 1 h of the anterior descending coronary artery. After 2 h of in vivo reperfusion hearts were evaluated on an isolated erythrocyte-perfused working heart model. Cold ischaemia (4°C) for 60 min was followed by 45 min of reperfusion. Cardiac arrest was induced either with HTK (n = 10), HTK-N (n = 10) or HTK-N + S-NO-HSA (n = 10). In one group (HTK-N + S-NO-HSA plus in vivo S-NO-HSA; n = 9) an additional in vivo infusion of S-NO-HSA was performed.
Post-ischaemic recovery of cardiac output (HTK: 77 ± 4%, HTK-N: 86 ± 7%, HTK-N + S-NO-HSA: 101 ± 5%, in vivo S-NO-HSA: 93 ± 8%), external heart work (HTK: 79 ± 5%, HTK-N: 83 ± 3%, HTK-N + S-NO-HSA: 101 ± 8%, in vivo S-NO-HSA: 109 ± 13%), coronary flow (HTK: 77 ± 4%, HTK-N: 94 ± 6%, HTK-N + S-NO-HSA: 118 ± 15%, in vivo S-NO-HSA: 113 ± 3.17%) [HTK-N + S-NO-HSA vs HTK P < 0.001; HTK-N + S-NO-HSA vs HTK-N P < 0.05] and left atrial diastolic pressure (HTK: 122 ± 31%, HTK-N: 159 ± 43%, HTK-N + S-NO-HSA: 88 ± 30, in vivo S-NO-HSA: 62 ± 10%) [HTK-N + S-NO-HSA vs HTK P < 0.05; in vivo S-NO-HSA vs HTK-N P < 0.05] were significantly improved in both S-NO-HSA-treated groups compared with HTK and HTK-N, respectively. This was accompanied by better preservation of high-energy phosphates (adenosine triphosphate; energy charge) and ultrastructural integrity on transmission electron microscopy. However, no additional benefit of in vivo S-NO-HSA infusion was observed.
Addition of the NO donor, S-NO-HSA refines the concept of HTK-N cardioplegia in improving post-ischaemic myocardial perfusion. HTK-N with S-NO-HSA is a possible therapeutic option for patients who have to be operated on for acute MI.
目前可用的心脏停搏液能为手术风险正常的患者提供出色的保护;然而,在高风险患者中,如急诊冠状动脉搭桥手术患者,仍有改进空间。由于大多数心脏停搏液主要保护心肌细胞,添加保护内皮的物质可能会提高其保护潜力。一氧化氮供体S-亚硝基人血清白蛋白(S-NO-HSA)已被证明可防止内皮一氧化氮合酶解偶联,在大鼠急性心肌梗死(MI)和再灌注后,将其添加到新开发的组氨酸-色氨酸-酮戊二酸(HTK-N)心脏停搏液中,用于离体心脏灌注系统。
在雄性Sprague-Dawley大鼠中,通过结扎左冠状动脉前降支1小时诱导急性MI。在体内再灌注2小时后,在离体红细胞灌注工作心脏模型上评估心脏。4℃冷缺血60分钟后再灌注45分钟。分别用HTK(n = 10)、HTK-N(n = 10)或HTK-N + S-NO-HSA(n = 10)诱导心脏停搏。在一组(HTK-N + S-NO-HSA加体内S-NO-HSA;n = 9)中,额外进行了一次体内S-NO-HSA输注。
与HTK和HTK-N相比,两个S-NO-HSA治疗组的缺血后心输出量恢复(HTK:77±4%,HTK-N:86±7%,HTK-N + S-NO-HSA:101±5%,体内S-NO-HSA:93±8%)、心脏外部做功(HTK:79±5%,HTK-N:83±3%,HTK-N + S-NO-HSA:101±8%,体内S-NO-HSA:109±13%)、冠状动脉血流量(HTK:77±4%,HTK-N:94±6%,HTK-N + S-NO-HSA:118±15%,体内S-NO-HSA:113±3.17%)[HTK-N + S-NO-HSA与HTK相比P < 0.001;HTK-N + S-NO-HSA与HTK-N相比P < 0.05]和左心房舒张压(HTK:122±31%,HTK-N:159±43%,HTK-N + S-NO-HSA:88±30,体内S-NO-HSA:62±10%)[HTK-N + S-NO-HSA与HTK相比P < 0.05;体内S-NO-HSA与HTK-N相比P < 0.05]均有显著改善。这伴随着高能磷酸盐(三磷酸腺苷;能量电荷)的更好保存以及透射电子显微镜下超微结构的完整性。然而,未观察到体内输注S-NO-HSA有额外益处。
添加一氧化氮供体S-NO-HSA完善了HTK-N心脏停搏液改善缺血后心肌灌注的概念。含S-NO-HSA的HTK-N对于因急性MI而必须接受手术的患者可能是一种治疗选择。