Department of Chemical and Materials Engineering, University of Alberta, 9107-116 Street, Edmonton, AB, T6G 2V4 (Canada).
ChemSusChem. 2015 Jan;8(2):361-76. doi: 10.1002/cssc.201402704. Epub 2014 Dec 2.
A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface.
对于氧还原反应催化剂来说,一个关键的改进目标是同时提高电化学活性和耐久性。为此,研究了一种新的高导电性载体,它由原子层沉积在碳纳米管阵列上的 0.5nm 钛氧氮化物薄膜组成。研究了纯铂和铂(50at%)/镍合金的载体效应。氧氮化物使纯铂的 d 带中心下移,并从根本上改变了铂颗粒的尺寸和空间分布。与没有中间层的相同合成催化剂相比,这导致活性和腐蚀稳定性的显著提高。相反,氧氮化物对电子结构和微观结构的影响很小,因此对铂-镍的催化性能影响很小。基于密度泛函理论的计算提供了关于合金催化剂-载体界面处发生的成分偏析的深入见解。