Suppr超能文献

我的模型足够好吗?肌肉骨骼模型及运动模拟验证与确认的最佳实践。

Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement.

作者信息

Hicks Jennifer L, Uchida Thomas K, Seth Ajay, Rajagopal Apoorva, Delp Scott L

出版信息

J Biomech Eng. 2015 Feb 1;137(2):020905. doi: 10.1115/1.4029304. Epub 2015 Jan 26.

Abstract

Computational modeling and simulation of neuromusculoskeletal (NMS) systems enables researchers and clinicians to study the complex dynamics underlying human and animal movement. NMS models use equations derived from physical laws and biology to help solve challenging real-world problems, from designing prosthetics that maximize running speed to developing exoskeletal devices that enable walking after a stroke. NMS modeling and simulation has proliferated in the biomechanics research community over the past 25 years, but the lack of verification and validation standards remains a major barrier to wider adoption and impact. The goal of this paper is to establish practical guidelines for verification and validation of NMS models and simulations that researchers, clinicians, reviewers, and others can adopt to evaluate the accuracy and credibility of modeling studies. In particular, we review a general process for verification and validation applied to NMS models and simulations, including careful formulation of a research question and methods, traditional verification and validation steps, and documentation and sharing of results for use and testing by other researchers. Modeling the NMS system and simulating its motion involves methods to represent neural control, musculoskeletal geometry, muscle-tendon dynamics, contact forces, and multibody dynamics. For each of these components, we review modeling choices and software verification guidelines; discuss variability, errors, uncertainty, and sensitivity relationships; and provide recommendations for verification and validation by comparing experimental data and testing robustness. We present a series of case studies to illustrate key principles. In closing, we discuss challenges the community must overcome to ensure that modeling and simulation are successfully used to solve the broad spectrum of problems that limit human mobility.

摘要

神经肌肉骨骼(NMS)系统的计算建模与仿真使研究人员和临床医生能够研究人类和动物运动背后的复杂动力学。NMS模型使用从物理定律和生物学推导而来的方程,以帮助解决具有挑战性的现实世界问题,从设计能使跑步速度最大化的假肢到开发中风后能够助力行走的外骨骼装置。在过去25年里,NMS建模与仿真在生物力学研究领域迅速发展,但缺乏验证和确认标准仍然是其更广泛应用和产生影响的主要障碍。本文的目标是为NMS模型和仿真的验证与确认建立实用指南,研究人员、临床医生、审稿人及其他人员可采用这些指南来评估建模研究的准确性和可信度。特别是,我们回顾了应用于NMS模型和仿真的验证与确认的一般过程,包括仔细制定研究问题和方法、传统的验证与确认步骤,以及记录和分享结果以供其他研究人员使用和测试。对NMS系统进行建模并模拟其运动涉及表示神经控制、肌肉骨骼几何形状、肌腱动力学、接触力和多体动力学的方法。对于这些组件中的每一个,我们回顾建模选择和软件验证指南;讨论变异性、误差、不确定性和敏感性关系;并通过比较实验数据和测试稳健性来提供验证与确认的建议。我们展示了一系列案例研究来说明关键原则。最后,我们讨论了该领域必须克服的挑战,以确保建模和仿真能够成功用于解决限制人类移动性的广泛问题。

相似文献

2
On validation of multibody musculoskeletal models.
Proc Inst Mech Eng H. 2012 Feb;226(2):82-94. doi: 10.1177/0954411911431516.
3
An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
Comput Methods Biomech Biomed Engin. 2015;18(4):362-75. doi: 10.1080/10255842.2013.799147. Epub 2013 Jun 11.
4
Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.
Health Technol Assess. 2010 May;14(25):iii-iv, ix-xii, 1-107. doi: 10.3310/hta14250.
6
Flexing computational muscle: modeling and simulation of musculotendon dynamics.
J Biomech Eng. 2013 Feb;135(2):021005. doi: 10.1115/1.4023390.
8
OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223. doi: 10.1371/journal.pcbi.1006223. eCollection 2018 Jul.
9
Computer modeling and simulation of human movement.
Annu Rev Biomed Eng. 2001;3:245-73. doi: 10.1146/annurev.bioeng.3.1.245.
10
Verification, validation and sensitivity studies in computational biomechanics.
Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84. doi: 10.1080/10255840601160484.

引用本文的文献

2
Hip, knee, and ankle joint forces during exoskeletal-assisted walking: Comparison of approaches to simulate human-robot interactions.
PLoS One. 2025 Aug 29;20(8):e0322247. doi: 10.1371/journal.pone.0322247. eCollection 2025.
4
Biomechanical analysis of hip, knee, and ankle joint contact forces during squats in elite powerlifters.
PLoS One. 2025 Jul 24;20(7):e0327973. doi: 10.1371/journal.pone.0327973. eCollection 2025.
7
Estimating within-stride metabolic cost from stride-average data using autoencoders and expander networks.
Front Bioeng Biotechnol. 2025 Jun 20;13:1579085. doi: 10.3389/fbioe.2025.1579085. eCollection 2025.
8
Effect of altered gluteus maximus strength on the magnitude and direction of hip joint contact forces during simulations of gait.
PLoS One. 2025 Jun 23;20(6):e0324451. doi: 10.1371/journal.pone.0324451. eCollection 2025.

本文引用的文献

1
Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives.
ACM Trans Graph. 2012 Jul;31(4). doi: 10.1145/2185520.2185521.
2
3
OpenSim: a musculoskeletal modeling and simulation framework for investigations and exchange.
Procedia IUTAM. 2011;2:212-232. doi: 10.1016/j.piutam.2011.04.021.
4
Simbody: multibody dynamics for biomedical research.
Procedia IUTAM. 2011;2:241-261. doi: 10.1016/j.piutam.2011.04.023.
5
The contribution of a central pattern generator in a reflex-based neuromuscular model.
Front Hum Neurosci. 2014 Jun 26;8:371. doi: 10.3389/fnhum.2014.00371. eCollection 2014.
6
Changes in tibiofemoral forces due to variations in muscle activity during walking.
J Orthop Res. 2014 Jun;32(6):769-76. doi: 10.1002/jor.22601. Epub 2014 Feb 26.
7
A comparison of muscle energy models for simulating human walking in three dimensions.
J Biomech. 2014 Apr 11;47(6):1373-81. doi: 10.1016/j.jbiomech.2014.01.049. Epub 2014 Feb 15.
9
Relationships of 35 lower limb muscles to height and body mass quantified using MRI.
J Biomech. 2014 Feb 7;47(3):631-8. doi: 10.1016/j.jbiomech.2013.12.002. Epub 2013 Dec 11.
10
A review of techniques for parameter sensitivity analysis of environmental models.
Environ Monit Assess. 1994 Sep;32(2):135-54. doi: 10.1007/BF00547132.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验