Hicks Jennifer L, Uchida Thomas K, Seth Ajay, Rajagopal Apoorva, Delp Scott L
J Biomech Eng. 2015 Feb 1;137(2):020905. doi: 10.1115/1.4029304. Epub 2015 Jan 26.
Computational modeling and simulation of neuromusculoskeletal (NMS) systems enables researchers and clinicians to study the complex dynamics underlying human and animal movement. NMS models use equations derived from physical laws and biology to help solve challenging real-world problems, from designing prosthetics that maximize running speed to developing exoskeletal devices that enable walking after a stroke. NMS modeling and simulation has proliferated in the biomechanics research community over the past 25 years, but the lack of verification and validation standards remains a major barrier to wider adoption and impact. The goal of this paper is to establish practical guidelines for verification and validation of NMS models and simulations that researchers, clinicians, reviewers, and others can adopt to evaluate the accuracy and credibility of modeling studies. In particular, we review a general process for verification and validation applied to NMS models and simulations, including careful formulation of a research question and methods, traditional verification and validation steps, and documentation and sharing of results for use and testing by other researchers. Modeling the NMS system and simulating its motion involves methods to represent neural control, musculoskeletal geometry, muscle-tendon dynamics, contact forces, and multibody dynamics. For each of these components, we review modeling choices and software verification guidelines; discuss variability, errors, uncertainty, and sensitivity relationships; and provide recommendations for verification and validation by comparing experimental data and testing robustness. We present a series of case studies to illustrate key principles. In closing, we discuss challenges the community must overcome to ensure that modeling and simulation are successfully used to solve the broad spectrum of problems that limit human mobility.
神经肌肉骨骼(NMS)系统的计算建模与仿真使研究人员和临床医生能够研究人类和动物运动背后的复杂动力学。NMS模型使用从物理定律和生物学推导而来的方程,以帮助解决具有挑战性的现实世界问题,从设计能使跑步速度最大化的假肢到开发中风后能够助力行走的外骨骼装置。在过去25年里,NMS建模与仿真在生物力学研究领域迅速发展,但缺乏验证和确认标准仍然是其更广泛应用和产生影响的主要障碍。本文的目标是为NMS模型和仿真的验证与确认建立实用指南,研究人员、临床医生、审稿人及其他人员可采用这些指南来评估建模研究的准确性和可信度。特别是,我们回顾了应用于NMS模型和仿真的验证与确认的一般过程,包括仔细制定研究问题和方法、传统的验证与确认步骤,以及记录和分享结果以供其他研究人员使用和测试。对NMS系统进行建模并模拟其运动涉及表示神经控制、肌肉骨骼几何形状、肌腱动力学、接触力和多体动力学的方法。对于这些组件中的每一个,我们回顾建模选择和软件验证指南;讨论变异性、误差、不确定性和敏感性关系;并通过比较实验数据和测试稳健性来提供验证与确认的建议。我们展示了一系列案例研究来说明关键原则。最后,我们讨论了该领域必须克服的挑战,以确保建模和仿真能够成功用于解决限制人类移动性的广泛问题。