一种基于转录组学的新型体外方法,用于基于作用模式比较和预测肝毒性。

A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action.

机构信息

Mason Business Center, The Procter & Gamble Company, Cincinnati, OH 45040, USA.

Mason Business Center, The Procter & Gamble Company, Cincinnati, OH 45040, USA.

出版信息

Toxicology. 2015 Feb 3;328:29-39. doi: 10.1016/j.tox.2014.11.008. Epub 2014 Dec 2.

Abstract

High-content data have the potential to inform mechanism of action for toxicants. However, most data to support this notion have been generated in vivo. Because many cell lines and primary cells maintain a differentiated cell phenotype, it is possible that cells grown in culture may also be useful in predictive toxicology via high-content approaches such as whole-genome microarray. We evaluated global changes in gene expression in primary rat hepatocytes exposed to two concentrations of ten hepatotoxicants: acetaminophen (APAP), β-naphthoflavone (BNF), chlorpromazine (CPZ), clofibrate (CLO), bis(2-ethylhexyl)phthalate (DEHP), diisononyl phthalate (DINP), methapyrilene (MP), valproic acid (VPA), phenobarbital (PB) and WY14643 at two separate time points. These compounds were selected to cover a range of mechanisms of toxicity, with some overlap in expected mechanism to address the question of how predictive gene expression analysis is, for a given mode of action. Gene expression microarray analysis was performed on cells after 24h and 48h of exposure to each chemical using Affymetrix microarrays. Cluster analysis suggests that the primary hepatocyte model was capable of responding to these hepatotoxicants, with changes in gene expression that appear to be mode of action-specific. Among the different methods used for analysis of the data, a combination method that used pathways (MOAs) to filter total probesets provided the most robust analysis. The analysis resulted in the phthalates clustering closely together, with the two other peroxisome proliferators, CLO and WY14643, eliciting similar responses at the whole-genome and pathway levels. The Cyp inducers PB, MP, CPZ and BNF also clustered together. VPA and APAP had profiles that were unique. A similar analysis was performed on externally available (TG-GATES) in vivo data for 6 of the chemicals (APAP, CLO, CPZ, MP, MP and WY14643) and compared to the in vitro result. These results indicate that transcription profiling using an in vitro assay may offer pertinent biological data to support predictions of in vivo hepatotoxicity potential.

摘要

高内涵数据有可能为毒物的作用机制提供信息。然而,支持这一观点的大多数数据都是在体内产生的。由于许多细胞系和原代细胞保持分化的细胞表型,因此通过高内涵方法(如全基因组微阵列)在培养物中生长的细胞也可能对预测毒理学有用。我们评估了暴露于两种浓度的十种肝毒物的原代大鼠肝细胞中基因表达的全局变化:对乙酰氨基酚(APAP)、β-萘黄酮(BNF)、氯丙嗪(CPZ)、氯贝特(CLO)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二异壬酯(DINP)、甲吡咯啉(MP)、丙戊酸(VPA)、苯巴比妥(PB)和 WY14643。这些化合物被选择来涵盖一系列毒性机制,其中一些在预期机制上有重叠,以解决给定作用模式的基因表达分析的预测性问题。在暴露于每种化学物质 24h 和 48h 后,使用 Affymetrix 微阵列对细胞进行基因表达微阵列分析。聚类分析表明,原代肝细胞模型能够对这些肝毒物做出反应,基因表达的变化似乎具有作用模式特异性。在用于数据分析的不同方法中,使用途径(MOAs)过滤总探针集的组合方法提供了最稳健的分析。该分析导致邻苯二甲酸盐紧密聚类,另外两种过氧化物酶体增殖物 CLO 和 WY14643 在全基因组和途径水平上引起类似的反应。Cyp 诱导剂 PB、MP、CPZ 和 BNF 也聚集在一起。VPA 和 APAP 的特征是独特的。对另外 6 种化学物质(APAP、CLO、CPZ、MP、MP 和 WY14643)的体外可用(TG-GATES)体内数据进行了类似的分析,并与体外结果进行了比较。这些结果表明,使用体外测定进行转录谱分析可能会提供相关的生物学数据,以支持对体内肝毒性潜力的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索