Holka F, Urban M, Neogrády P, Paldus J
Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Slovak University of Technology in Bratislava, Paulínska 16, 917 24 Trnava, Slovakia.
Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia.
J Chem Phys. 2014 Dec 7;141(21):214303. doi: 10.1063/1.4902353.
We explore dipole polarizabilities of the singly and doubly charged anions F(-), Cl(-), O(2-), and S(2-) in an external, harmonic oscillator (HO) confining potential ∑(i)½ω(2)r(i)(2). We find that in contrast to F(-) and Cl(-) those for O(2-) and S(2-) are unrealistically high due to the instability of the corresponding restricted Hartree-Fock (RHF) solutions. Yet, already a relatively weak HO confining potential stabilizes their RHF solutions and eliminates any possible broken-symmetry solutions. The coupled-cluster theory with single, double and noniterative triple excitations (CCSD(T)) then yields considerably reduced polarizabilities for O(2-) and S(2-) relative to their unconfined values. We showed that polarizabilities of O(2-) and S(2-) are more sensitive to the strength of a confinement potential than are those for F(-) and Cl(-). This enables us to relate the confining parameter ω with the known experimental polarizabilities for selected crystals (our "training set") and to find a specific confining parameter ω for which the CCSD(T) polarizability equals the experimental in-crystal polarizability of an anion in the training set. The latter may then be used as an alternative approach for determining the in-crystal polarizabilities of anions by exploiting the fact that the characteristic ω values depend linearly on the ionic radius of a cation participating in specific crystals containing these anions. Using this method we then calculate the isotropic dipole polarizabilities for F(-), Cl(-), O(2-), and S(2-) embedded in the LiF, LiCl, NaF, NaCl, KF, KCl, ZnO, ZnS, MgO, MgS, CaO, CaS, SrO, SrS, BaO, BaS, and other crystals containing halogen, oxygen, or sulphur anions. We compare our results with those obtained via alternative models of the in-crystal anionic polarizabilities.
我们研究了单电荷和双电荷阴离子F(-)、Cl(-)、O(2-)和S(2-)在外部简谐振子(HO)限制势∑(i)½ω(2)r(i)(2)中的偶极极化率。我们发现,与F(-)和Cl(-)不同,由于相应的受限哈特里-福克(RHF)解的不稳定性,O(2-)和S(2-)的极化率高得不符合实际。然而,一个相对较弱的HO限制势就能使它们的RHF解稳定下来,并消除任何可能的破缺对称解。然后,包含单、双和非迭代三激发的耦合簇理论(CCSD(T))给出的O(2-)和S(2-)的极化率相对于其无限制值大幅降低。我们表明,O(2-)和S(2-)的极化率比F(-)和Cl(-)的极化率对限制势的强度更敏感。这使我们能够将限制参数ω与选定晶体(我们的“训练集”)的已知实验极化率联系起来,并找到一个特定的限制参数ω,对于该参数,CCSD(T)极化率等于训练集中阴离子的实验晶体极化率。然后,利用特征ω值与参与包含这些阴离子的特定晶体的阳离子离子半径线性相关这一事实,后者可作为确定阴离子晶体极化率的另一种方法。使用这种方法,我们接着计算了嵌入在LiF、LiCl、NaF、NaCl、KF、KCl、ZnO、ZnS、MgO、MgS、CaO、CaS、SrO、SrS、BaO、BaS以及其他包含卤素、氧或硫阴离子的晶体中的F(-)、Cl(-)、O(2-)和S(2-)的各向同性偶极极化率。我们将我们的结果与通过晶体中阴离子极化率的替代模型获得的结果进行比较。