Forest Ecology & Forest Management group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands; Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
Glob Chang Biol. 2015 May;21(5):2040-54. doi: 10.1111/gcb.12826. Epub 2015 Feb 6.
Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods showed highest reliability to detect long-term growth trends.
树木年轮分析常用于评估树木生长的长期趋势。存在多种生长趋势检测方法(GDMs)来区分生长中的年龄/大小趋势和长期生长变化。然而,这些去趋势方法在方法上存在很大差异,这可能会对其输出产生影响。在这里,我们批判性地评估了四种最广泛使用的 GDMs 的一致性、敏感性、可靠性和准确性:保守去趋势(CD)应用数学函数来纠正随年龄减小的环宽;基底面积校正(BAC)将直径转换为基底面积生长;区域曲线标准化(RCS)使用平均年龄/大小趋势对个体树木年轮系列进行去趋势;大小类隔离(SCI)在单独的大小类中计算生长趋势。首先,我们评估了这些 GDMs 应用于泰国热带树种苦楝的实证树木年轮数据集时是否产生一致的结果。三种 GDMs 得出了相似的结果——随着时间的推移生长下降——但广泛使用的 CD 方法没有检测到任何变化。其次,我们通过将这些 GDMs 应用于具有不同施加趋势的模拟生长轨迹来评估它们的敏感性(正确检测生长趋势的概率)、可靠性(100%减去检测错误趋势的概率)和准确性(施加趋势的强度是否正确检测):没有趋势、强趋势(每十年变化-6%和+6%)和弱趋势(-2%、+2%)。除 CD 外,所有方法都显示出很高的敏感性、可靠性和准确性,可以检测到强施加趋势。然而,在弱或无趋势情况下,这些都要低得多。BAC 显示出良好的敏感性和准确性,但可靠性较低,表明使用这种方法检测趋势存在不确定性。我们的研究表明,GDM 的选择会影响生长趋势研究的结果。我们建议在分析趋势时使用多种方法,并鼓励进行敏感性和可靠性分析。最后,我们建议使用 SCI 和 RCS,因为这些方法在检测长期生长趋势方面具有最高的可靠性。