Suppr超能文献

罪名成立:p53在疾病中不断扩大的作用

Guilty as CHARGED: p53's expanding role in disease.

作者信息

Van Nostrand Jeanine L, Attardi Laura D

机构信息

a Division of Radiation and Cancer Biology; Department of Radiation Oncology ; Stanford School of Medicine ; Stanford , CA USA.

出版信息

Cell Cycle. 2014;13(24):3798-807. doi: 10.4161/15384101.2014.987627.

Abstract

Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53(L25Q,W26S,F53Q,F54S)), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p53(5,26,53,54/)(+) embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer.

摘要

在发育过程中,若p53的负调控因子Mdm2或Mdmx缺失,p53活性不受抑制,会导致早期胚胎致死。令人惊讶的是,野生型p53与p53的转录失活变体(两个反式激活结构域均有突变,即p53(L25Q,W26S,F53Q,F54S))共表达,也会导致致死,但发生在妊娠后期,且伴有一系列非常特殊的表型,让人联想到一种名为CHARGE的综合征。分子分析表明,在p53(5,26,53,54/)阳性胚胎中,野生型p53被不适当激活,在发育过程中触发细胞周期停滞或凋亡,从而导致CHARGE表型。此外,CHARGE综合征通常由CHD7染色质重塑因子的突变引起,并且我们已经表明,激活的p53会导致CHD7缺陷引起的表型。这些研究共同为CHARGE综合征提供了新的见解,并扩展了我们对p53在癌症以外疾病中作用的理解。

相似文献

1
Guilty as CHARGED: p53's expanding role in disease.
Cell Cycle. 2014;13(24):3798-807. doi: 10.4161/15384101.2014.987627.
2
Inappropriate p53 activation during development induces features of CHARGE syndrome.
Nature. 2014 Oct 9;514(7521):228-32. doi: 10.1038/nature13585. Epub 2014 Aug 3.
3
ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation.
Cell Cycle. 2005 Sep;4(9):1166-70. doi: 10.4161/cc.4.9.1981. Epub 2005 Sep 29.
4
Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner.
Dev Biol. 2017 Mar 1;423(1):34-45. doi: 10.1016/j.ydbio.2017.01.014. Epub 2017 Jan 22.
7
SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription.
J Mol Biol. 2009 May 15;388(4):691-702. doi: 10.1016/j.jmb.2009.03.033. Epub 2009 Mar 19.
9
Sema3a plays a role in the pathogenesis of CHARGE syndrome.
Hum Mol Genet. 2018 Apr 15;27(8):1343-1352. doi: 10.1093/hmg/ddy045.
10
A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation.
Cell Cycle. 2005 Mar;4(3):411-7. doi: 10.4161/cc.4.3.1522. Epub 2005 Mar 2.

引用本文的文献

1
Neuronal IL-17 controls developmental diapause through CEP-1/p53.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2315248121. doi: 10.1073/pnas.2315248121. Epub 2024 Mar 14.
2
Multifaceted role for p53 in pancreatic cancer suppression.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2211937120. doi: 10.1073/pnas.2211937120. Epub 2023 Feb 27.
3
p53 Activation in Genetic Disorders: Different Routes to the Same Destination.
Int J Mol Sci. 2021 Aug 27;22(17):9307. doi: 10.3390/ijms22179307.
4
p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR).
Cell. 2021 Feb 4;184(3):689-708.e20. doi: 10.1016/j.cell.2020.12.025. Epub 2021 Jan 21.
6
Germline mutation of , a major p53 regulator, in a familial syndrome of defective telomere maintenance.
Sci Adv. 2020 Apr 10;6(15):eaay3511. doi: 10.1126/sciadv.aay3511. eCollection 2020 Apr.
7
Targeting MDM2 for novel molecular therapy: Beyond oncology.
Med Res Rev. 2020 May;40(3):856-880. doi: 10.1002/med.21637. Epub 2019 Oct 6.
8
The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes.
Dev Cell. 2019 Jul 22;50(2):212-228.e6. doi: 10.1016/j.devcel.2019.05.015. Epub 2019 Jun 6.
9
The role of p53 in developmental syndromes.
J Mol Cell Biol. 2019 Mar 1;11(3):200-211. doi: 10.1093/jmcb/mjy087.
10
A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.
Cancer Cell. 2017 Oct 9;32(4):460-473.e6. doi: 10.1016/j.ccell.2017.09.007.

本文引用的文献

1
p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13385-90. doi: 10.1073/pnas.1401923111. Epub 2014 Sep 2.
2
Inappropriate p53 activation during development induces features of CHARGE syndrome.
Nature. 2014 Oct 9;514(7521):228-32. doi: 10.1038/nature13585. Epub 2014 Aug 3.
4
p53 and ribosome biogenesis stress: the essentials.
FEBS Lett. 2014 Aug 19;588(16):2571-9. doi: 10.1016/j.febslet.2014.04.014. Epub 2014 Apr 18.
5
Treacher Collins Syndrome: the genetics of a craniofacial disease.
Int J Pediatr Otorhinolaryngol. 2014 Jun;78(6):893-8. doi: 10.1016/j.ijporl.2014.03.006. Epub 2014 Mar 13.
6
Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide.
Ann Hematol. 2014 May;93(5):723-33. doi: 10.1007/s00277-014-2022-3. Epub 2014 Mar 14.
7
Mdm2 is required for maintenance of the nephrogenic niche.
Dev Biol. 2014 Mar 1;387(1):1-14. doi: 10.1016/j.ydbio.2014.01.009. Epub 2014 Jan 17.
8
Genomic characterization of the inherited bone marrow failure syndromes.
Semin Hematol. 2013 Oct;50(4):333-47. doi: 10.1053/j.seminhematol.2013.09.002.
10
Understanding the role of Tbx1 as a candidate gene for 22q11.2 deletion syndrome.
Curr Allergy Asthma Rep. 2013 Dec;13(6):613-21. doi: 10.1007/s11882-013-0384-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验