Suppr超能文献

一种用于染色质相互作用数据的贝叶斯混合模型。

A Bayesian mixture model for chromatin interaction data.

作者信息

Niu Liang, Lin Shili

出版信息

Stat Appl Genet Mol Biol. 2015 Feb;14(1):53-64. doi: 10.1515/sagmb-2014-0029.

Abstract

Chromatin interactions mediated by a particular protein are of interest for studying gene regulation, especially the regulation of genes that are associated with, or known to be causative of, a disease. A recent molecular technique, Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), that uses chromatin immunoprecipitation (ChIP) and high throughput paired-end sequencing, is able to detect such chromatin interactions genomewide. However, ChIA-PET may generate noise (i.e., pairings of DNA fragments by random chance) in addition to true signal (i.e., pairings of DNA fragments by interactions). In this paper, we propose MC_DIST based on a mixture modeling framework to identify true chromatin interactions from ChIA-PET count data (counts of DNA fragment pairs). The model is cast into a Bayesian framework to take into account the dependency among the data and the available information on protein binding sites and gene promoters to reduce false positives. A simulation study showed that MC_DIST outperforms the previously proposed hypergeometric model in terms of both power and type I error rate. A real data study showed that MC_DIST may identify potential chromatin interactions between protein binding sites and gene promoters that may be missed by the hypergeometric model. An R package implementing the MC_DIST model is available at http://www.stat.osu.edu/~statgen/SOFTWARE/MDM.

摘要

由特定蛋白质介导的染色质相互作用对于研究基因调控具有重要意义,特别是与疾病相关或已知导致疾病的基因的调控。最近的一种分子技术,即通过双末端标签测序进行染色质相互作用分析(ChIA-PET),它利用染色质免疫沉淀(ChIP)和高通量双末端测序,能够在全基因组范围内检测此类染色质相互作用。然而,除了真实信号(即通过相互作用的DNA片段配对)外,ChIA-PET还可能产生噪声(即DNA片段随机配对)。在本文中,我们基于混合建模框架提出了MC_DIST,以从ChIA-PET计数数据(DNA片段对的计数)中识别真实的染色质相互作用。该模型被构建为贝叶斯框架,以考虑数据之间的依赖性以及蛋白质结合位点和基因启动子上的可用信息,从而减少假阳性。一项模拟研究表明,在功效和I型错误率方面,MC_DIST均优于先前提出的超几何模型。一项实际数据研究表明,MC_DIST可能识别出超几何模型可能遗漏的蛋白质结合位点与基因启动子之间的潜在染色质相互作用。可通过http://www.stat.osu.edu/~statgen/SOFTWARE/MDM获取实现MC_DIST模型的R包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验