Suppr超能文献

高维倾向评分算法在具有时变干预措施的比较效果研究中的应用

High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.

作者信息

Neugebauer Romain, Schmittdiel Julie A, Zhu Zheng, Rassen Jeremy A, Seeger John D, Schneeweiss Sebastian

机构信息

Division of Research, Kaiser Permanente Northern California, Oakland, CA, U.S.A.

出版信息

Stat Med. 2015 Feb 28;34(5):753-81. doi: 10.1002/sim.6377. Epub 2014 Dec 8.

Abstract

The high-dimensional propensity score (hdPS) algorithm was proposed for automation of confounding adjustment in problems involving large healthcare databases. It has been evaluated in comparative effectiveness research (CER) with point treatments to handle baseline confounding through matching or covariance adjustment on the hdPS. In observational studies with time-varying interventions, such hdPS approaches are often inadequate to handle time-dependent confounding and selection bias. Inverse probability weighting (IPW) estimation to fit marginal structural models can adequately handle these biases under the fundamental assumption of no unmeasured confounders. Upholding of this assumption relies on the selection of an adequate set of covariates for bias adjustment. We describe the application and performance of the hdPS algorithm to improve covariate selection in CER with time-varying interventions based on IPW estimation and explore stabilization of the resulting estimates using Super Learning. The evaluation is based on both the analysis of electronic health records data in a real-world CER study of adults with type 2 diabetes and a simulation study. This report (i) establishes the feasibility of IPW estimation with the hdPS algorithm based on large electronic health records databases, (ii) demonstrates little impact on inferences when supplementing the set of expert-selected covariates using the hdPS algorithm in a setting with extensive background knowledge, (iii) supports the application of the hdPS algorithm in discovery settings with little background knowledge or limited data availability, and (iv) motivates the application of Super Learning to stabilize effect estimates based on the hdPS algorithm.

摘要

高维倾向评分(hdPS)算法被提出用于涉及大型医疗数据库的问题中混杂因素调整的自动化。它已在比较效果研究(CER)中通过点治疗进行评估,以通过对hdPS进行匹配或协方差调整来处理基线混杂因素。在具有随时间变化干预措施的观察性研究中,这种hdPS方法往往不足以处理随时间变化的混杂因素和选择偏倚。拟合边际结构模型的逆概率加权(IPW)估计在无未测量混杂因素的基本假设下可以充分处理这些偏倚。维持这一假设依赖于选择一组适当的协变量进行偏倚调整。我们描述了hdPS算法在基于IPW估计的具有随时间变化干预措施的CER中用于改善协变量选择的应用和性能,并使用超级学习探索所得估计值的稳定性。评估基于对2型糖尿病成人的真实世界CER研究中的电子健康记录数据的分析以及一项模拟研究。本报告(i)基于大型电子健康记录数据库建立了使用hdPS算法进行IPW估计的可行性,(ii)在具有广泛背景知识的环境中,使用hdPS算法补充专家选择的协变量集时,对推断的影响很小,(iii)支持在背景知识很少或数据可用性有限的发现环境中应用hdPS算法,以及(iv)激发了应用超级学习来稳定基于hdPS算法的效应估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验