Zaborske John M, DuMont Vanessa L Bauer, Wallace Edward W J, Pan Tao, Aquadro Charles F, Drummond D Allan
Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America.
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
PLoS Biol. 2014 Dec 9;12(12):e1002015. doi: 10.1371/journal.pbio.1002015. eCollection 2014 Dec.
Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the Drosophila/Sophophora genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in D. melanogaster, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in D. melanogaster reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient.
自然选择有利于编码蛋白质的高效表达,但进化的编码变化的原因、机制和适应性后果仍然是一个积极探索的领域。我们报告了果蝇/黑腹果蝇属中12种果蝇密码子相对翻译准确性的大规模逆转。由于这种逆转涉及由相同基因组编码的tRNA读取的密码子对,我们假设并通过直接测量表明,tRNA反密码子从鸟苷到queuosine的修饰与这些基因组变化共同进化。Queuosine修饰存在于大多数生物体中,但其功能仍不清楚。在黑腹果蝇的不同发育阶段,修饰水平有所不同,并且与因果效应一致,在每个阶段最大表达的基因显示出对给定阶段特异性queuosine修饰水平下最准确的密码子的选择。在一个动力学模型中,已知queuosine修饰的tRNA对核糖体的亲和力增加会提高同源密码子的准确性,同时降低近同源密码子的准确性。黑腹果蝇中queuosine修饰的水平反映了前体queuine的生物可利用性,真核生物从细菌的tRNA中清除queuine并在肠道中吸收。这些结果揭示了一种极其直接的机制,通过这种机制,整个基因组的重新编码源于一种营养素利用的变化。