Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom; email:
Annu Rev Biochem. 2015;84:551-75. doi: 10.1146/annurev-biochem-060614-034142. Epub 2014 Dec 8.
The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.
蛋白质单体形成功能性复合物是几乎所有生物过程的基础。在最近几十年中,已经确定了数千种同型和异型蛋白质复合物结构,这极大地提高了我们对控制对称和非对称四级结构组织的基本原理的理解。此外,我们对蛋白质复合物的认识已经超越了静态表示形式,包括四级结构的动态方面,包括结合时的构象变化、多步骤有序组装途径以及完全组装复合物内发生的结构波动。最后,我们在理解蛋白质复合物的进化方面取得了重大进展,包括重建特定复合物的进化历史以及阐明解释四级结构如何倾向于进化的一般机制。四级结构的进化是通过自组装状态的变化或通过蛋白质亚基的获得或丧失来发生的,这些过程可以由适应性和非适应性影响驱动。