文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器人优先级模型的多机器人系统避障的切换编队策略。

A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

机构信息

Department of Electrical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk, South Korea.

Wellness Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.

出版信息

ISA Trans. 2015 May;56:123-34. doi: 10.1016/j.isatra.2014.10.008. Epub 2014 Dec 10.


DOI:10.1016/j.isatra.2014.10.008
PMID:25497595
Abstract

This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions.

摘要

本文提出了一种具有速度约束的多机器人避障和穿越障碍物的切换编队策略。在该策略中,领航机器人采用几何避障控制方法(GOACM)规划安全路径。通过计算与领航机器人的新期望距离和偏航角,跟随机器人切换到安全编队。在避障过程中,基于领航机器人和跟随机器人之间的期望距离和偏航角,设计了一种新的机器人优先级模型,以考虑避碰问题。自适应跟踪控制算法保证了轨迹和速度跟踪误差收敛到零。为了验证所提出方法的有效性,仿真和实验结果表明多机器人能够有效地形成和切换编队以避免碰撞。

相似文献

[1]
A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

ISA Trans. 2014-12-10

[2]
Null-space-based modulated reference trajectory generator for multi-robots formation in obstacle environment.

ISA Trans. 2022-4

[3]
Neural network control of mobile robot formations using RISE feedback.

IEEE Trans Syst Man Cybern B Cybern. 2009-4

[4]
Formation Control and Tracking of Mobile Robots using Distributed Estimators and A Biologically Inspired Approach.

J Electr Eng Technol. 2023

[5]
Bearing-based localization for leader-follower formation control.

PLoS One. 2017-4-20

[6]
Leader-follower formation control based on non-inertial frames for non-holonomic mobile robots.

PLoS One. 2024

[7]
Adaptive Formation Control of Electrically Driven Nonholonomic Mobile Robots With Limited Information.

IEEE Trans Syst Man Cybern B Cybern. 2011-8

[8]
LF-ACO: an effective formation path planning for multi-mobile robot.

Math Biosci Eng. 2022-1

[9]
Collision Avoidance Path Planning and Tracking Control for Autonomous Vehicles Based on Model Predictive Control.

Sensors (Basel). 2024-8-12

[10]
Collaborative Multi-Robot Transportation in Obstacle-Cluttered Environments via Implicit Communication.

Front Robot AI. 2018-8-7

引用本文的文献

[1]
Multi-Robot Preemptive Task Scheduling with Fault Recovery: A Novel Approach to Automatic Logistics of Smart Factories.

Sensors (Basel). 2021-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索