Vikram Sarabhai Space Centre, ISRO, Thiruvananthapuram, India.
Vikram Sarabhai Space Centre, ISRO, Thiruvananthapuram, India.
Neural Netw. 2015 Mar;63:66-78. doi: 10.1016/j.neunet.2014.10.010. Epub 2014 Nov 8.
The approach of applying a cascaded network consisting of radial basis function nodes and least square error minimization block to Compressed Sensing for recovery of sparse signals is analyzed in this paper to improve the computation time and convergence of an existing ANN based recovery algorithm. The proposed radial basis function-least square error projection cascade network for sparse signal Recovery (RASR) utilizes the smoothed L0 norm optimization, L2 least square error projection and feedback network model to improve the signal recovery performance over the existing CSIANN algorithm. The use of ANN architecture in the recovery algorithm gives a marginal reduction in computational time compared to an existing L0 relaxation based algorithm SL0. The simulation results and experimental evaluation of the algorithm performance are presented here.
本文分析了将由径向基函数节点和最小二乘误差最小化块组成的级联网络应用于压缩感知以恢复稀疏信号的方法,以提高现有基于人工神经网络的恢复算法的计算时间和收敛速度。所提出的用于稀疏信号恢复的径向基函数-最小二乘误差投影级联网络(RASR)利用平滑 L0 范数优化、L2 最小二乘误差投影和反馈网络模型,提高了现有 CSIANN 算法的信号恢复性能。与现有的基于 L0 松弛的算法 SL0 相比,恢复算法中人工神经网络结构的使用仅略微减少了计算时间。本文给出了算法性能的仿真结果和实验评估。