Walz Sarah, Weis Sylvia, Franz Mareike, Rominger Frank, Trapp Oliver
Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
Electrophoresis. 2015 Mar;36(5):796-804. doi: 10.1002/elps.201400499. Epub 2015 Feb 4.
The phthalimidone derivatives EM12 and lenalidomide, which are both structurally related to thalidomide, are highly interesting drugs and very recently lenalidomide attracted great attention as an antitumor and immune-modulating drug in the therapy for multiple myeloma. EM12 and lenalidomide are chiral, and the stereogenic carbon C-3 in the piperidine-2,6-dione moiety of these phthalimidone derivatives is prone to interconversion due to keto-enol tautomerization. The knowledge of the enantiomerization barrier is mandatory for pharmacokinetic studies and to develop a tailored therapy using the enantiopure or racemic drug. Here, we used dynamic EKC in combination with direct-calculation methods to determine the enantiomerization barriers of EM12 and lenalidomide. The separations of the enantiomers of EM12 and lenalidomide were performed in 50 mM aqueous disodium hydrogen phosphate buffer at pH 8 and 50 mM aqueous sodium tetraborate buffer at pH 9.3, respectively, using 20 mg/mL heptakis-(2,3-diacetyl-6-sulfato)-β-CD as a chiral additive. Enantiomerization of the compounds during the electrokinetic chromatographic separation resulted in pronounced plateau formation between the well-separated enantiomers. Peak form analysis of the experimentally obtained interconversion profiles yielded the enantiomerization rate constants k1 of EM12 and lenalidomide as well as the kinetic activation parameters ΔG(‡), ΔH(‡‡), and ΔS(‡) of enantiomerization by the evaluation of temperature-dependent measurements. The enantiomerization barrier ΔG(‡) was determined to be 98.3 ± 1.0 kJ/mol; the activation parameters ΔH(‡) = 46.1 ± 2.4 kJ/mol and ΔS(‡) = -170 ± 61 J/(K·mol) for EM12 and ΔG(‡) = 91.5 ± 1.0 kJ/mol, ΔH(‡) = 62.4 ± 5.4 kJ/mol, and ΔS(‡) = -98 ± 7 J/(K·mol) for lenalidomide. These findings were corroborated by density functional theory calculations at the B3LYP/3-21G level of theory of the ground state and intermediates considering an enantiomerization pathway via a keto-enol tautomerism.
邻苯二甲酰亚胺衍生物EM12和来那度胺在结构上都与沙利度胺相关,它们都是非常有趣的药物,最近来那度胺作为一种抗肿瘤和免疫调节药物在多发性骨髓瘤治疗中引起了极大关注。EM12和来那度胺是手性分子,这些邻苯二甲酰亚胺衍生物的哌啶-2,6-二酮部分中的手性碳C-3由于酮-烯醇互变异构而易于发生相互转化。对映体转化能垒的知识对于药代动力学研究以及开发使用对映体纯或外消旋药物的定制疗法来说是必不可少的。在此,我们使用动态电动色谱法结合直接计算方法来测定EM12和来那度胺的对映体转化能垒。EM12和来那度胺对映体的分离分别在pH 8的50 mM磷酸氢二钠水溶液缓冲液和pH 9.3的50 mM硼酸钠水溶液缓冲液中进行,使用20 mg/mL七-(2,3-二乙酰基-6-硫酸根)-β-环糊精作为手性添加剂。在电动色谱分离过程中化合物的对映体转化导致在分离良好的对映体之间形成明显的平台。通过评估温度依赖性测量,对实验获得的相互转化曲线进行峰形分析得出了EM12和来那度胺的对映体转化速率常数k1以及对映体转化的动力学活化参数ΔG(‡)、ΔH(‡‡)和ΔS(‡)。测定EM12的对映体转化能垒ΔG(‡)为98.3±1.0 kJ/mol;EM12的活化参数ΔH(‡)=46.1±2.4 kJ/mol和ΔS(‡)= -170±61 J/(K·mol),来那度胺的ΔG(‡)=91.5±1.0 kJ/mol、ΔH(‡)=62.4±5.4 kJ/mol和ΔS(‡)= -98±7 J/(K·mol)。这些发现通过在考虑经由酮-烯醇互变异构的对映体转化途径的基态和中间体的B3LYP/3-21G理论水平上的密度泛函理论计算得到了证实。