State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin (PR China), Fax: (+86) 431-85262836; University of Chinese Academy of Sciences, Beijing, 100049, (PR China).
ChemSusChem. 2015 Jan;8(2):260-3. doi: 10.1002/cssc.201402926. Epub 2014 Dec 11.
Formic acid (FA) and methanol, as convenient hydrogen-containing materials, are most widely used for fuel cells. However, using suitable and low-cost catalysts to further improve their energy performance still is a matter of great significance. Herein, PdCo and PdCo@Pd nanocatalysts (NCs) are successfully prepared by the facile method. Pd 3d binding energy decreases due to the presence of Co. Consequently, PdCo@Pd NCs exhibit high catalytic activity and selectivity toward FA dehydrogenation at room temperature. The gas-generation rate at 30 min is 65.4 L h(-1) g(-1) . PdCo/C has the worst catalytic performance in this reaction, despite the fact that it has a high gas-generation rate in the initial 30 min. Furthermore, both PdCo and PdCo@Pd NCs have enhanced electrocatalytic performance toward methanol oxidation. Their maximum currents are 966 and 1205 mA mg(-1) , respectively, which is much higher than monometallic Pd/C.
甲酸(FA)和甲醇作为方便的含氢材料,是最广泛用于燃料电池。然而,使用合适和低成本的催化剂来进一步提高它们的能量性能仍然具有重要意义。在此,通过简便的方法成功制备了 PdCo 和 PdCo@Pd 纳米催化剂(NCs)。由于 Co 的存在,Pd3d 结合能降低。因此,PdCo@Pd NCs 在室温下对 FA 脱氢表现出高的催化活性和选择性。在 30 分钟时的气体生成速率为 65.4 L h(-1) g(-1)。在该反应中,PdCo/C 的催化性能最差,尽管它在最初 30 分钟内具有较高的气体生成速率。此外,PdCo 和 PdCo@Pd NCs 对甲醇氧化都表现出增强的电催化性能。它们的最大电流分别为 966 和 1205 mA mg(-1),远高于单金属 Pd/C。