Suppr超能文献

一种用于满足调强质子治疗线性注量图优化中剂量体积约束的自动方法。

An Automatic Approach for Satisfying Dose-Volume Constraints in Linear Fluence Map Optimization for IMPT.

作者信息

Zaghian Maryam, Lim Gino, Liu Wei, Mohan Radhe

机构信息

Department of Industrial Engineering, University of Houston, Houston, USA.

Department of Radiation Oncology, Mayo Clinic, Phoenix, USA.

出版信息

J Cancer Ther. 2014 Feb;5(2):198-207. doi: 10.4236/jct.2014.52025.

Abstract

Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.

摘要

放射治疗的处方是根据剂量体积约束(DVC)给出的。在满足DVC的同时解决注量图优化(FMO)问题,通常需要在各种器官上进行繁琐的试错来选择合适的剂量控制参数。在本文中,我们提出了一种迭代方法,使用多目标线性规划(LP)模型来求解子野强度,以满足DVC。该算法从任意初始参数值开始,通过迭代求解过程逐步更新值,朝着最优解前进。该方法通过在危及器官(OAR)保护和靶区覆盖之间进行权衡来找到合适的参数值,以改进解决方案。我们将所提出算法的计划质量和DVC的满足情况与两种非线性方法进行了比较:一种是使用L-BFGS算法求解的非线性FMO模型,另一种是由商业治疗计划系统(Eclipse 8.9)求解的方法。我们从机构数据库中回顾性地选择了5例肺癌患者和1例前列腺癌患者进行本研究。数值结果表明,我们的方法在试图保持相应OAR的DVC得到满足的同时,成功地提高了靶区覆盖以满足DVC。用于求解非线性FMO模型的LBFGS算法在5个测试案例中的3个中成功满足了DVC。然而,除了通过试错手动更改一些参数值以得出更符合DVC要求的解决方案外,非线性FMO模型中没有其他方法可以纠正未满足的DVC。基于LP的启发式算法在DVC满足方面优于当前的治疗计划系统。基于LP的启发式方法的一个主要优点是它对起始条件不敏感。

相似文献

2
Integrating soft and hard dose-volume constraints into hierarchical constrained IMRT optimization.
Med Phys. 2020 Feb;47(2):414-421. doi: 10.1002/mp.13908. Epub 2019 Dec 4.
4
Automated fluence map optimization based on fuzzy inference systems.
Med Phys. 2016 Mar;43(3):1083-95. doi: 10.1118/1.4941007.
5
A dose-volume constraint (DVC) projection-based algorithm for IMPT inverse planning optimization.
Med Phys. 2022 Apr;49(4):2699-2708. doi: 10.1002/mp.15504. Epub 2022 Feb 23.
6
Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.
Phys Med Biol. 2012 Oct 21;57(20):6407-28. doi: 10.1088/0031-9155/57/20/6407. Epub 2012 Sep 21.
8
Voxel-based automatic multi-criteria optimization for intensity modulated radiation therapy.
Radiat Oncol. 2018 Dec 5;13(1):241. doi: 10.1186/s13014-018-1179-7.
9
Deterministic direct aperture optimization using multiphase piecewise constant segmentation.
Med Phys. 2017 Nov;44(11):5596-5609. doi: 10.1002/mp.12529. Epub 2017 Sep 22.

引用本文的文献

3
Artificial general intelligence for radiation oncology.
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100045. Epub 2023 Nov 24.
5
Deep-learning based fast and accurate 3D CT deformable image registration in lung cancer.
Med Phys. 2023 Nov;50(11):6864-6880. doi: 10.1002/mp.16548. Epub 2023 Jun 8.
8
A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management.
Int J Part Ther. 2021 Jun 25;8(1):36-49. doi: 10.14338/IJPT-20-00049.1. eCollection 2021 Summer.
10
Mixed integer programming with dose-volume constraints in intensity-modulated proton therapy.
J Appl Clin Med Phys. 2017 Sep;18(5):29-35. doi: 10.1002/acm2.12130. Epub 2017 Jul 6.

本文引用的文献

1
Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.
Phys Med Biol. 2012 Oct 21;57(20):6407-28. doi: 10.1088/0031-9155/57/20/6407. Epub 2012 Sep 21.
2
Beyond Gaussians: a study of single-spot modeling for scanning proton dose calculation.
Phys Med Biol. 2012 Feb 21;57(4):983-97. doi: 10.1088/0031-9155/57/4/983. Epub 2012 Feb 1.
3
Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.
Health Care Manag Sci. 2012 Jun;15(2):138-54. doi: 10.1007/s10729-012-9190-2. Epub 2012 Jan 10.
4
The dose-volume constraint satisfaction problem for inverse treatment planning with field segments.
Phys Med Biol. 2004 Feb 21;49(4):601-16. doi: 10.1088/0031-9155/49/4/010.
6
Multiple local minima in IMRT optimization based on dose-volume criteria.
Med Phys. 2002 Jul;29(7):1514-27. doi: 10.1118/1.1485059.
9
Optimization of importance factors in inverse planning.
Phys Med Biol. 1999 Oct;44(10):2525-36. doi: 10.1088/0031-9155/44/10/311.
10
Intensity modulation methods for proton radiotherapy.
Phys Med Biol. 1999 Jan;44(1):185-205. doi: 10.1088/0031-9155/44/1/014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验