Suppr超能文献

探索肌动蛋白及其超结构的稳定性极限。

Exploring the stability limits of actin and its suprastructures.

作者信息

Rosin Christopher, Erlkamp Mirko, Ecken Julian von der, Raunser Stefan, Winter Roland

机构信息

Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.

出版信息

Biophys J. 2014 Dec 16;107(12):2982-2992. doi: 10.1016/j.bpj.2014.11.006.

Abstract

Actin is the main component of the microfilament system in eukaryotic cells and can be found in distinct morphological states. Global (G)-actin is able to assemble into highly organized, supramolecular cellular structures known as filamentous (F)-actin and bundled (B)-actin. To evaluate the structure and stability of G-, F-, and B-actin over a wide range of temperatures and pressures, we used Fourier transform infrared spectroscopy in combination with differential scanning and pressure perturbation calorimetry, small-angle x-ray scattering, laser confocal scanning microscopy, and transmission electron microscopy. Our analysis was designed to provide new (to our knowledge) insights into the stabilizing forces of actin self-assembly and to reveal the stability of the actin polymorphs, including in conditions encountered in extreme environments. In addition, we sought to explain the limited pressure stability of actin self-assembly observed in vivo. G-actin is not only the least temperature-stable but also the least pressure-stable actin species. Under abyssal conditions, where temperatures as low as 1-4°C and pressures up to 1 kbar are reached, G-actin is hardly stable. However, the supramolecular assemblies of actin are stable enough to withstand the extreme conditions usually encountered on Earth. Beyond ∼3-4 kbar, filamentous structures disassemble, and beyond ∼4 kbar, complete dissociation of F-actin structures is observed. Between ∼1 and 2 kbar, some disordering of actin assemblies commences, in agreement with in vivo observations. The limited pressure stability of the monomeric building block seems to be responsible for the suppression of actin assembly in the kbar pressure range.

摘要

肌动蛋白是真核细胞微丝系统的主要成分,可呈现不同的形态状态。球形(G)-肌动蛋白能够组装成高度有序的超分子细胞结构,即丝状(F)-肌动蛋白和成束(B)-肌动蛋白。为了评估G-、F-和B-肌动蛋白在广泛的温度和压力范围内的结构与稳定性,我们结合差示扫描量热法、压力扰动热法、小角X射线散射、激光共聚焦扫描显微镜和透射电子显微镜,使用了傅里叶变换红外光谱法。我们的分析旨在(据我们所知)为肌动蛋白自组装的稳定力提供新的见解,并揭示肌动蛋白多晶型物的稳定性,包括在极端环境中遇到的条件下的稳定性。此外,我们试图解释在体内观察到的肌动蛋白自组装有限的压力稳定性。G-肌动蛋白不仅是温度稳定性最低的肌动蛋白种类,也是压力稳定性最低的。在深海条件下,温度低至1-4°C,压力高达1千巴,G-肌动蛋白几乎不稳定。然而,肌动蛋白的超分子组装体足够稳定,能够承受地球上通常遇到的极端条件。超过约3-4千巴,丝状结构会解体,超过约4千巴,会观察到F-肌动蛋白结构完全解离。在约1至2千巴之间,肌动蛋白组装体开始出现一些无序现象,这与体内观察结果一致。单体构建块有限的压力稳定性似乎是在千巴压力范围内抑制肌动蛋白组装的原因。

相似文献

1
Exploring the stability limits of actin and its suprastructures.
Biophys J. 2014 Dec 16;107(12):2982-2992. doi: 10.1016/j.bpj.2014.11.006.
3
Cosolvent and Crowding Effects on the Temperature and Pressure Dependent Conformational Dynamics and Stability of Globular Actin.
J Phys Chem B. 2016 Jul 14;120(27):6575-86. doi: 10.1021/acs.jpcb.6b04738. Epub 2016 Jun 28.
7
Marasmius scorodonius extracellular dimeric peroxidase - exploring its temperature and pressure stability.
Biochim Biophys Acta. 2009 Jul;1794(7):1091-8. doi: 10.1016/j.bbapap.2009.03.015. Epub 2009 Apr 2.
10
[The effect of phalloidin on stability of F- and G-actin].
Mol Biol (Mosk). 1995 May-Jun;29(3):597-602.

引用本文的文献

1
Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors.
Front Phys. 2021 May;9. doi: 10.3389/fphy.2021.675885. Epub 2021 May 27.
2
On the Origin of Microtubules' High-Pressure Sensitivity.
Biophys J. 2018 Mar 13;114(5):1080-1090. doi: 10.1016/j.bpj.2018.01.021.
3
Thermal Excitation of the Mechanotransduction Apparatus of Hair Cells.
Neuron. 2018 Feb 7;97(3):586-595.e4. doi: 10.1016/j.neuron.2018.01.013.
5
Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP.
Biophys J. 2015 Dec 1;109(11):2371-81. doi: 10.1016/j.bpj.2015.10.023.

本文引用的文献

1
High-pressure chemical biology and biotechnology.
Chem Rev. 2014 Jul 23;114(14):7239-67. doi: 10.1021/cr400204z. Epub 2014 Jun 2.
2
Pressure modulation of Ras-membrane interactions and intervesicle transfer.
J Am Chem Soc. 2013 Apr 24;135(16):6149-56. doi: 10.1021/ja312671j. Epub 2013 Apr 16.
3
Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering.
Biochem Biophys Res Commun. 2013 Feb 15;431(3):542-6. doi: 10.1016/j.bbrc.2013.01.021. Epub 2013 Jan 12.
4
Effect of molecular crowding on the temperature-pressure stability diagram of ribonuclease A.
Chemphyschem. 2013 Feb 4;14(2):386-93. doi: 10.1002/cphc.201200767. Epub 2012 Dec 20.
5
Entropy and volume change of dissociation in tobacco mosaic virus probed by high pressure.
J Phys Chem B. 2012 Dec 27;116(51):14817-28. doi: 10.1021/jp310219k. Epub 2012 Dec 14.
6
Cavities determine the pressure unfolding of proteins.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50. doi: 10.1073/pnas.1200915109. Epub 2012 Apr 10.
7
Revealing conformational substates of lipidated N-Ras protein by pressure modulation.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5. doi: 10.1073/pnas.1110553109. Epub 2011 Dec 27.
8
Applications of pressure perturbation calorimetry in biophysical studies.
Biophys Chem. 2011 Jun;156(1):13-23. doi: 10.1016/j.bpc.2010.12.010. Epub 2011 Jan 4.
9
Structural reorganization of parallel actin bundles by crosslinking proteins: incommensurate states of twist.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051919. doi: 10.1103/PhysRevE.82.051919. Epub 2010 Nov 15.
10
Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release.
Cell. 2010 Oct 15;143(2):275-87. doi: 10.1016/j.cell.2010.09.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验