Suppr超能文献

靶点特异性天然/诱饵构象分类器提高了CSAR 2013基准测试中配体排名的准确性。

Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.

作者信息

Fourches Denis, Politi Regina, Tropsha Alexander

机构信息

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States.

出版信息

J Chem Inf Model. 2015 Jan 26;55(1):63-71. doi: 10.1021/ci500519w. Epub 2014 Dec 18.

Abstract

As part of the CSAR 2013 benchmark exercise, we have implemented a hybrid docking and scoring workflow to rank 10 steroid ligands of an engineered digoxigenin-binding protein. Schrödinger's Glide docking software was used to generate poses for each steroid ligand and rank them according to both standard docking precision (SP) and extra docking precision (XP) scoring functions. The unique component of our approach was the use of a target-specific pose classifier trained to discriminate nativelike from decoy poses. To build the classifier, a single cognate ligand with a known native pose (PDB code 4J8T) was docked multiple times into its target protein, and the generated poses were divided into two classes (nativelike and decoy) using a root-mean-square deviation threshold of 2 Å. All of the poses were characterized by the MCT-Tess descriptors of the protein-ligand interface, and random forest (RF) models were trained to discriminate the two classes of poses on the basis of their descriptors. The consensus pose classifier was then applied to the Glide-generated poses of each CSAR ligand in order to filter out those poses predicted as decoys and rerank the remaining ones using both XP and SP scoring functions. The best-scoring pose for each ligand following this filtering step was used for final ligand ranking. Overall, the ranking accuracy for the 10 ligands evaluated by the Spearman correlation coefficient was 0.64 for SP and 0.52 for XP but reached 0.75 for SP/RF consensus scoring (ranked third in the CSAR 2013 benchmark exercise). This study reconfirms that target-specific pose scoring models are capable of enhancing the reliability of structure-based molecular docking by discarding decoy poses.

摘要

作为2013年计算机辅助药物设计基准测试(CSAR 2013)的一部分,我们实施了一种混合对接和评分工作流程,对一种工程化洋地黄毒苷结合蛋白的10种甾体配体进行排序。使用薛定谔公司的Glide对接软件为每种甾体配体生成构象,并根据标准对接精度(SP)和额外对接精度(XP)评分函数对其进行排序。我们方法的独特之处在于使用了一个目标特异性构象分类器,该分类器经过训练以区分天然构象和诱饵构象。为了构建分类器,将一个具有已知天然构象(PDB代码4J8T)的同源配体多次对接至其目标蛋白,并使用2 Å的均方根偏差阈值将生成的构象分为两类(天然构象和诱饵构象)。所有构象均通过蛋白质-配体界面的MCT-Tess描述符进行表征,并训练随机森林(RF)模型以根据其描述符区分这两类构象。然后将一致性构象分类器应用于每个CSAR配体的Glide生成构象,以滤除那些被预测为诱饵的构象,并使用XP和SP评分函数对其余构象重新排序。此过滤步骤后每种配体得分最高的构象用于最终的配体排序。总体而言,通过斯皮尔曼相关系数评估的10种配体的排序准确性,对于SP为0.64,对于XP为0.52,但对于SP/RF一致性评分达到0.75(在2013年CSAR基准测试中排名第三)。这项研究再次证实,目标特异性构象评分模型能够通过舍弃诱饵构象来提高基于结构的分子对接的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验