Ietswaart Robert, Szardenings Florian, Gerdes Kenn, Howard Martin
Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom.
Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom.
PLoS Comput Biol. 2014 Dec 18;10(12):e1004009. doi: 10.1371/journal.pcbi.1004009. eCollection 2014 Dec.
Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.
细菌中的低拷贝数质粒需要通过细胞分裂进行分离以实现稳定遗传。这通常通过parABC位点来实现,该位点由一个ATP酶ParA、DNA结合蛋白ParB和一个编码ParB结合位点的parC区域组成。这些最小的组件将质粒均匀地分布在类核上,但其潜在机制尚不清楚。在这里,我们研究了一个模型,其中ParA-ATP可以动态地与类核结合,并被质粒相关的ParB水解,从而产生与类核结合的、自组织的ParA浓度梯度。我们通过数学证明,质粒两侧竞争的ParA浓度差异可以确定质粒的规则定位。无论质粒移动的确切机制如何,包括质粒通过ParA介导的固定化扩散或由ParB/parC刺激的ParA结构解体诱导的质粒定向运动,都可以实现这种定位。然而,我们通过实验发现,来自大肠杆菌质粒pB171的parABC增加了质粒的移动性,这与扩散/固定化不一致。相反,我们的观察结果支持质粒的定向运动。我们的模型预测ParA的动态振荡比以前认为的要少,我们通过实验验证了这一预测。我们还表明,ParA的定位和质粒的定位取决于潜在的类核形态,这表明染色体结构限制了ParA结构的形成。我们的定向运动模型统一了先前相互矛盾的质粒分离模型,并为可能广泛适用的自组织质粒间距提供了一个强大的机制基础。