Son Jino, Vavra Janna, Li Yusong, Seymour Megan, Forbes Valery
School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
Chemosphere. 2015 Apr;124:136-42. doi: 10.1016/j.chemosphere.2014.12.005. Epub 2014 Dec 27.
The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles.
制备稳定的纳米颗粒储备悬浮液是纳米毒理学研究的第一步,但不同的制备方法如何影响溶液中纳米颗粒的物理化学性质,即使是在超纯水中,往往未得到充分重视。在本研究中,采用了一种基于中心复合设计(CCD)的系统方法,来研究超声处理时间和悬浮液浓度对银(Ag)和氧化铜(CuO)纳米颗粒(NPs)物理化学性质(即流体动力学直径、zeta电位和离子溶解)的影响,并确定在超纯水中制备悬浮液的最佳条件;定义为获得最小的颗粒尺寸、最高的悬浮稳定性和最低的离子溶解。事实上,AgNPs和CuONPs的所有物理化学性质都因储备悬浮液的制备方式而有显著差异,并且在不同类型的纳米颗粒之间也有很大不同,这表明悬浮液制备的重要性。此外,AgNPs和CuONPs的物理化学性质,至少在简单介质(超纯水)中,作为超声处理时间和悬浮液浓度的函数呈现出可预测的变化,证实了我们模型的有效性。总体而言,该方法能够系统评估各种因素对纳米颗粒悬浮液关键性质的影响,这将有助于优化纳米颗粒储备悬浮液的制备,并提高纳米毒理学结果的可重复性。我们建议在进行纳米毒理学研究之前,应进一步关注储备悬浮液制备的细节,因为这些细节可能会对纳米颗粒的行为和后续毒性产生重要影响。