Kengne Jacques, Kenmogne Fabien
Laboratoire d'Automatique et Informatique Apliquée (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Bandjoun (Cameroon).
Laboratory of Modeling and Simulation in Engineering, Biomimetics and Prototype, University of Yaoundé 1, Yaoundé (Cameroon).
Chaos. 2014 Dec;24(4):043134. doi: 10.1063/1.4903313.
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.
本文考虑了塔马塞维丘特及其合作者最近提出的具有平坦功率谱的四阶席尔瓦 - 扬型混沌振荡器的非线性动力学。在这种类型的振荡器中,一对反并联连接的半导体二极管充当产生混沌振荡所需的非线性元件。基于肖克利二极管方程并适当选择状态变量,推导了一个光滑的数学模型(涉及双曲正弦和余弦函数),以便更好地描述系统的规则和混沌动力学。通过时间序列、分岔图、李雅普诺夫指数图、庞加莱截面和频谱,从其参数方面对振荡器的复杂行为进行了表征。结果表明,混沌的产生是通过经典的倍周期和对称性恢复危机情景实现的。为了证实所提出的数学模型准确描述/预测振荡器的规则和混沌行为的能力,给出了该振荡器非线性动力学的一些PSPICE仿真。