Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain; Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy.
Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain.
J Colloid Interface Sci. 2015 Jul 1;449:87-91. doi: 10.1016/j.jcis.2014.12.018. Epub 2014 Dec 15.
The library of plasmonic nanosystems keeps expanding with novel structures with the potential to provide new solutions to old problems in science and technology. We report the synthesis of a novel plasmonic system based on the growth of gold nanowires radially branching from the surface of silica particles. The nanowires length could be controlled by tuning the molar ratio between metal salt and surface-grafted seeds. Electron microscopy characterization revealed that the obtained one-dimensional nanoparticles are polycrystalline but uniformly distributed on the spherical template. The length of the nanowires in turn determines the optical response of the metallodielectric particles, so that longer wires display red-shifted longitudinal plasmon bands. Accurate theoretical modeling of these complex objects revealed that the densely organized nanowires display intrinsically coupled plasmon modes that can be selectively decoupled upon detachment of the nanowires from the surface of the colloidal silica template.
等离子体纳米系统的库不断扩展,具有新颖的结构,有可能为科学技术中的老问题提供新的解决方案。我们报告了一种新型等离子体系统的合成,该系统基于金纳米线从二氧化硅颗粒表面径向分支的生长。通过调整金属盐和表面接枝种子之间的摩尔比,可以控制纳米线的长度。电子显微镜表征表明,所得到的一维纳米颗粒是多晶的,但均匀分布在球形模板上。纳米线的长度反过来又决定了金属电介质颗粒的光学响应,因此较长的纳米线显示出红移的纵向等离子体带。对这些复杂物体的精确理论建模表明,密集排列的纳米线显示出固有耦合的等离子体模式,这些模式可以通过从胶体二氧化硅模板表面分离纳米线而选择性地去耦。