Argonne National Laboratory, Argonne, Illinois 60439, USA.
SLAC National Accelerator Laboratory, Stanford, California 94309, USA.
Phys Rev Lett. 2014 Dec 19;113(25):253001. doi: 10.1103/PhysRevLett.113.253001. Epub 2014 Dec 18.
We present an extended Monte Carlo rate equation approach to examine the inner-shell ionization dynamics of atoms in an intense x-ray free-electron laser (XFEL) pulse. In addition to photoionization, Auger decay, and fluorescence processes, we include bound-to-bound transitions in the rate equation calculations. Using an efficient computational scheme, we account for "hidden resonances" unveiled during the course of an XFEL pulse. For Ar, the number of possible electron configurations is increased ten-billion-fold over that required under nonresonant conditions. We investigated the complex ionization dynamics of Ar atoms exposed to an 480-eV XFEL pulse, where production of ions above charge state 10+ is not allowed via direct one-photon ionization. We found that resonance-enhanced x-ray multiple ionization pathways play a dominant role in producing these nominally inaccessible charge states. Our calculated results agree with the measured Ar ion yield and pulse-duration dependence. We also predict the surprising ion yields reported earlier for Kr and Xe. The Monte Carlo rate equation method enables theoretical exploration of the complex dynamics of resonant high-intensity x-ray processes.
我们提出了一种扩展的蒙特卡罗速率方程方法,以研究强 X 射线自由电子激光(XFEL)脉冲中原子的内壳层离化动力学。除光电离、俄歇衰变和荧光过程外,我们还在速率方程计算中包括了束缚态到束缚态的跃迁。我们使用有效的计算方案,在 XFEL 脉冲过程中考虑了“隐藏共振”。对于 Ar,可能的电子组态数量比非共振条件下所需的数量增加了十亿倍。我们研究了暴露于 480eV XFEL 脉冲的 Ar 原子的复杂离化动力学,其中通过单次光子电离不允许产生高于 10+电荷态的离子。我们发现,共振增强的 X 射线多电离途径在产生这些名义上不可达的电荷态中起着主导作用。我们的计算结果与测量的 Ar 离子产率和脉冲持续时间依赖性一致。我们还预测了早些时候报道的 Kr 和 Xe 的令人惊讶的离子产率。蒙特卡罗速率方程方法能够对共振高强度 X 射线过程的复杂动力学进行理论探索。