Suppr超能文献

类过敏反应损伤1编码AtPPT1,并调节拟南芥中活性氧的积累及对细菌病原体丁香假单胞菌的防御。

Hypersensitive response-like lesions 1 codes for AtPPT1 and regulates accumulation of ROS and defense against bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana.

作者信息

Dutta Aditya, Chan Samuel H P, Pauli Noel T, Raina Ramesh

机构信息

Department of Biology, Syracuse University , Syracuse, New York.

出版信息

Antioxid Redox Signal. 2015 Mar 20;22(9):785-96. doi: 10.1089/ars.2014.5963. Epub 2015 Feb 11.

Abstract

AIMS

Plants employ both basal and resistance gene (R gene)-mediated defenses in response to pathogens. Reactive oxygen species (ROS) are widely reported to play a central role in both basal and R gene-mediated defense; however, the nature of ROS has been less well established for basal defense. In addition, spatial distribution of redox moieties and mechanisms of plant responses during basal defense are poorly understood. We investigated redox signaling in Arabidopsis thaliana in response to virulent bacterial pathogen, focusing on the role of the mitochondria in balancing energy demands against generation of physiologically relevant ROS.

RESULTS

Positional cloning of an Arabidopsis lesion mimic mutant identified a polyprenyl transferase involved in the biosynthesis of Coenzyme Q10 (CoQ), which leads to novel insights into physiological ROS levels and their role in basal resistance. Gain- and loss-of-function studies identified Coenzyme Q10 redox state to be a key determinant of ROS levels. These Coenzyme Q10 redox state-mediated ROS levels had a direct bearing on both response against pathogen and ability to thrive in high oxidative stress environments.

INNOVATION

We demonstrate that Coenzyme Q10 redox state generates an ROS threshold for a successful basal resistance response. Perturbation of the Coenzyme Q10 redox state has the potential to disrupt plant defense responses against bacterial pathogens.

CONCLUSIONS

Coenzyme Q10 redox state is a key regulator of Arabidopsis basal resistance against bacterial pathogens.

摘要

目的

植物在应对病原体时会采用基础防御和抗性基因(R基因)介导的防御机制。活性氧(ROS)在基础防御和R基因介导的防御中均发挥核心作用,这一点已有广泛报道;然而,基础防御中ROS的性质尚未完全明确。此外,基础防御过程中氧化还原部分的空间分布以及植物的反应机制也了解甚少。我们研究了拟南芥对毒性细菌病原体的氧化还原信号传导,重点关注线粒体在平衡能量需求与产生生理相关ROS方面的作用。

结果

对拟南芥一个类病变突变体进行定位克隆,鉴定出一种参与辅酶Q10(CoQ)生物合成的聚异戊二烯转移酶,这为生理ROS水平及其在基础抗性中的作用带来了新的见解。功能获得和功能缺失研究确定辅酶Q10的氧化还原状态是ROS水平的关键决定因素。这些由辅酶Q10氧化还原状态介导的ROS水平直接影响对病原体的反应以及在高氧化应激环境中生长的能力。

创新点

我们证明辅酶Q10的氧化还原状态为成功的基础抗性反应产生了一个ROS阈值。辅酶Q10氧化还原状态的扰动有可能破坏植物对细菌病原体的防御反应。

结论

辅酶Q10的氧化还原状态是拟南芥对细菌病原体基础抗性的关键调节因子。

相似文献

5
The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses.
Plant J. 2011 May;66(4):642-55. doi: 10.1111/j.1365-313X.2011.04525.x. Epub 2011 Mar 21.
6
Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens.
Plant J. 2011 Sep;67(5):749-62. doi: 10.1111/j.1365-313X.2011.04622.x. Epub 2011 Jun 10.
9
Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000.
J Proteomics. 2018 Mar 20;175:114-126. doi: 10.1016/j.jprot.2018.01.002. Epub 2018 Jan 9.

引用本文的文献

2
3
The Transcriptional Responses of Ectomycorrhizal Fungus, to Drought Stress.
J Fungi (Basel). 2022 Dec 21;9(1):15. doi: 10.3390/jof9010015.
4
Novel Insights into Floral Thermogenesis: In Vivo Analyses of Mitochondrial Dynamics in Flowers.
Int J Mol Sci. 2022 Oct 8;23(19):11950. doi: 10.3390/ijms231911950.
5
Arabidopsis Modulates Pathogen Defense and Tolerance to Oxidative Stress.
Front Plant Sci. 2020 Jun 3;11:703. doi: 10.3389/fpls.2020.00703. eCollection 2020.
8
Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering.
Front Plant Sci. 2016 Dec 16;7:1898. doi: 10.3389/fpls.2016.01898. eCollection 2016.

本文引用的文献

1
Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis.
Nat Protoc. 2014 Feb;9(2):421-38. doi: 10.1038/nprot.2014.018. Epub 2014 Jan 23.
2
Redox regulation in plant immune function.
Antioxid Redox Signal. 2014 Sep 20;21(9):1373-88. doi: 10.1089/ars.2013.5679. Epub 2014 Feb 4.
3
Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance.
Antioxid Redox Signal. 2013 Sep 20;19(9):990-7. doi: 10.1089/ars.2013.5429. Epub 2013 Jul 17.
5
Reactive oxygen species generation and signaling in plants.
Plant Signal Behav. 2012 Dec;7(12):1621-33. doi: 10.4161/psb.22455. Epub 2012 Oct 16.
7
Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10768-73. doi: 10.1073/pnas.1016060108. Epub 2011 Jun 13.
8
ROS signaling: the new wave?
Trends Plant Sci. 2011 Jun;16(6):300-9. doi: 10.1016/j.tplants.2011.03.007. Epub 2011 Apr 7.
9
Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana.
Methods Mol Biol. 2007;372:125-36. doi: 10.1007/978-1-59745-365-3_9.
10
The hypersensitive response; the centenary is upon us but how much do we know?
J Exp Bot. 2008;59(3):501-20. doi: 10.1093/jxb/erm239. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验