Sundaram Rajashabala, Scheiner Steve, Roy Ajit K, Kar Tapas
School of Physics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India.
Phys Chem Chem Phys. 2015 Feb 7;17(5):3850-66. doi: 10.1039/c4cp04790g. Epub 2015 Jan 5.
The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes.
原始的硼氮纳米管在其表面同时含有路易斯酸(硼)和路易斯碱(氮)中心。在本密度泛函理论(DFT)研究中,分别探索了作为吸附质的路易斯碱代表氨分子和路易斯酸代表硼烷分子与硼氮纳米管表面匹配位点的相互作用。吸附能表明,在扶手椅型(4,4)和锯齿型(8,0)的硼氮纳米管变体中,硼烷的化学吸附(约15 - 20千卡/摩尔(-1))比氨(约5 - 10千卡/摩尔(-1))更强。NH₃在(8,0)型纳米管上的吸附优于(4,4)型,而BH₃则表现出相反的偏好,这表明酸碱相互作用存在一定的手性依赖性。在BH₃/AlH₃ - 硼氮纳米管(边缘位点)络合物中发现了一种新的键合特征,除了配位共价键(N: → B)外,客体分子中的一个氢参与了三中心两电子键合。这种相互作用导致电子流从硼烷/铝烷流向硼氮纳米管的方向发生反转,使纳米管成为电子受体,这表明通过改变引入的路易斯酸的强度可能实现电子性质的调控。相反,在氨络合物中硼氮纳米管总是表现为电子受体。红外光谱(IR)、X射线光电子能谱(XPS)和核磁共振光谱(NMR)显示了络合物的一些特征,不仅可以帮助实验人员识别此类络合物的结构,还能确定客体分子的位置并设计二次功能化。还研究了与其他几种中性的BF₃、BCl₃、BH₂CH₃和离子型CH₃(+)酸以及氨基(CH₃NH₂和NH₂COOH)的相互作用。在硼氮纳米管 - CH₃(+)络合物中发现了最强的相互作用(>100千卡/摩尔(-1)),而氢键是NH₂COOH - 硼氮纳米管络合物稳定性的唯一来源。