Suppr超能文献

在用于监管目的的预测建模中引入共形预测。一种用于适用性域确定的透明且灵活的替代方法。

Introducing conformal prediction in predictive modeling for regulatory purposes. A transparent and flexible alternative to applicability domain determination.

作者信息

Norinder Ulf, Carlsson Lars, Boyer Scott, Eklund Martin

机构信息

Swedish Toxicology Sciences Research Center, SE-151 36 Södertälje, Sweden.

AstraZeneca Research and Development, SE-431 83 Mölndal, Sweden.

出版信息

Regul Toxicol Pharmacol. 2015 Mar;71(2):279-84. doi: 10.1016/j.yrtph.2014.12.021. Epub 2015 Jan 2.

Abstract

Conformal prediction is presented as a framework which fulfills the OECD principles on (Q)SAR. It offers an intuitive extension to the application of machine-learning methods to structure-activity data where focus is on predictions with pre-defined confidence levels. A conformal predictor will make correct predictions on new compounds corresponding to a user defined confidence level. The confidence level can be altered depending on the situation the predictor is being used in, which allows for flexibility and adaption to risks that the user is willing to take. We demonstrate the usefulness of conformal prediction by applying it to 2 publicly available CAESAR binary classification datasets.

摘要

共形预测作为一个符合经合组织关于(定量)构效关系原则的框架被提出。它为将机器学习方法应用于构效数据提供了一种直观的扩展,其中重点是具有预定义置信水平的预测。共形预测器将对与用户定义的置信水平相对应的新化合物做出正确预测。置信水平可以根据预测器的使用情况进行更改,这允许灵活性并适应用户愿意承担的风险。我们通过将其应用于两个公开可用的CAESAR二元分类数据集来证明共形预测的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验