Suppr超能文献

基于聚类的个性化压力评估生理信号分析

Cluster-based analysis for personalized stress evaluation using physiological signals.

作者信息

Xu Qianli, Nwe Tin Lay, Guan Cuntai

出版信息

IEEE J Biomed Health Inform. 2015 Jan;19(1):275-81. doi: 10.1109/JBHI.2014.2311044.

Abstract

Technology development in wearable sensors and biosignal processing has made it possible to detect human stress from the physiological features. However, the intersubject difference in stress responses presents a major challenge for reliable and accurate stress estimation. This research proposes a novel cluster-based analysis method to measure perceived stress using physiological signals, which accounts for the intersubject differences. The physiological data are collected when human subjects undergo a series of task-rest cycles, incurring varying levels of stress that is indicated by an index of the State Trait Anxiety Inventory. Next, a quantitative measurement of stress is developed by analyzing the physiological features in two steps: 1) a k -means clustering process to divide subjects into different categories (clusters), and 2) cluster-wise stress evaluation using the general regression neural network. Experimental results show a significant improvement in evaluation accuracy as compared to traditional methods without clustering. The proposed method is useful in developing intelligent, personalized products for human stress management.

摘要

可穿戴传感器和生物信号处理技术的发展使得从生理特征检测人类压力成为可能。然而,压力反应的个体差异给可靠和准确的压力估计带来了重大挑战。本研究提出了一种新颖的基于聚类的分析方法,利用生理信号来测量感知压力,该方法考虑了个体差异。当人类受试者经历一系列任务 - 休息周期时收集生理数据,这些周期会产生由状态 - 特质焦虑量表指数表示的不同程度的压力。接下来,通过分两步分析生理特征来开发压力的定量测量方法:1)k - 均值聚类过程将受试者分为不同类别(簇),2)使用广义回归神经网络进行逐簇压力评估。实验结果表明,与无聚类的传统方法相比,评估准确性有显著提高。所提出的方法有助于开发用于人类压力管理的智能、个性化产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验