基因调控元件的鉴定与计算分析

Identification and computational analysis of gene regulatory elements.

作者信息

Taher Leila, Narlikar Leelavati, Ovcharenko Ivan

机构信息

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, 18051 Rostock, Germany.

Chemical Engineering and Process Development Division, National Chemical Laboratory, CSIR, Pune 411008, India.

出版信息

Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.top083642. doi: 10.1101/pdb.top083642.

Abstract

Over the last two decades, advances in experimental and computational technologies have greatly facilitated genomic research. Next-generation sequencing technologies have made de novo sequencing of large genomes affordable, and powerful computational approaches have enabled accurate annotations of genomic DNA sequences. Charting functional regions in genomes must account for not only the coding sequences, but also noncoding RNAs, repetitive elements, chromatin states, epigenetic modifications, and gene regulatory elements. A mix of comparative genomics, high-throughput biological experiments, and machine learning approaches has played a major role in this truly global effort. Here we describe some of these approaches and provide an account of our current understanding of the complex landscape of the human genome. We also present overviews of different publicly available, large-scale experimental data sets and computational tools, which we hope will prove beneficial for researchers working with large and complex genomes.

摘要

在过去二十年中,实验技术和计算技术的进步极大地推动了基因组研究。新一代测序技术使大型基因组的从头测序变得经济实惠,强大的计算方法能够对基因组DNA序列进行准确注释。绘制基因组中的功能区域不仅要考虑编码序列,还要考虑非编码RNA、重复元件、染色质状态、表观遗传修饰和基因调控元件。比较基因组学、高通量生物学实验和机器学习方法的结合在这一真正的全球努力中发挥了重要作用。在这里,我们描述其中一些方法,并阐述我们目前对人类基因组复杂格局的理解。我们还概述了不同的公开可用的大规模实验数据集和计算工具,希望这些对研究大型复杂基因组的研究人员有所帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索