Błoński Piotr, Hafner Jürgen
Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Wien, Austria. Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Kraków, Poland.
J Phys Condens Matter. 2015 Feb 4;27(4):046002. doi: 10.1088/0953-8984/27/4/046002. Epub 2015 Jan 7.
The structural and magnetic properties of mixed Pt-Co and Pt-Fe trimers and tetramers in the gas-phase and supported on a free-standing graphene layer have been calculated using density-functional theory. The influence of the strong magnetic moments of the 3d atoms on the Pt atoms and the influence of the strong spin-orbit coupling contributed by the Pt atoms on the 3d atoms have been studied in detail. All mixed trimers form isocele triangles in the gas-phase. On a graphene layer the structure is influenced by the strong binding of the 3d atoms, leading to an asymmetric configuration for Pt-rich and more symmetric structures for 3d-rich clusters. The magnetic anisotropy energy defined as the energy difference for easy and hard magnetization directions varies between 5 and 13 meV/atom for the free trimers, but is strongly reduced to values between 0.7 and 6.6 meV/atom for the graphene-supported clusters. The saddle-point energy representing the barrier against magnetization reversal is on average 3 meV/atom for free trimers, it is reduced to 2 meV/atom for the more symmetric PtCo(Fe)(2) clusters, and to only about 0.3 meV/atom for the asymmetric Pt(2)Co(Fe) cluster on graphene. For the mixed tetramers the strong magnetism stabilizes a flat geometric structure, except for Pt(3)Co which forms a distorted trigonal pyramid. The geometry of the graphene-supported tetramers is very different due to the requirement of a good match to the substrate. Large magnetic anisotropy energies are found for free Pt(3)Co where the change of the magnetization direction also induces a transition from a high- to a low-moment magnetic isomer. For all other free tetramers the magnetic anisotropy energy ranges between 3 to 5 meV/atom only, it is further reduced to 0.4 to 3.8 meV/atom for the graphene-supported tetramers. The reduction is strongest for Pt(3)Fe/graphene because of the asymmetric structure of the adsorption complex. The barriers against magnetization reversal range between only 0.3 meV/atom for Pt(3)Fe/graphene and about 3 meV/atom for PtFe(3) and Pt(3)Co. Altogether our results demonstrate a strong correlation between the geometric and magnetic degrees of freedom and the necessity to base investigations of the magnetic anisotropy of nanostructures on a simultaneous optimization of the total energy with respect to all geometric and magnetic parameters.
利用密度泛函理论计算了气相中以及负载在独立石墨烯层上的混合铂 - 钴和铂 - 铁三聚体及四聚体的结构和磁性。详细研究了3d原子的强磁矩对铂原子的影响以及铂原子贡献的强自旋 - 轨道耦合对3d原子的影响。所有混合三聚体在气相中形成等腰三角形。在石墨烯层上,结构受3d原子强键合的影响,导致富铂簇呈不对称构型,而富3d簇具有更对称的结构。自由三聚体的磁各向异性能量定义为易磁化方向和难磁化方向的能量差,其值在5至13毫电子伏特/原子之间变化,但对于石墨烯负载的簇,该值大幅降低至0.7至6.6毫电子伏特/原子之间。代表磁化反转势垒的鞍点能量,对于自由三聚体平均为3毫电子伏特/原子,对于更对称的PtCo(Fe)(2)簇降低至2毫电子伏特/原子,对于石墨烯上的不对称Pt(2)Co(Fe)簇仅约为0.3毫电子伏特/原子。对于混合四聚体,除了形成扭曲三角锥的Pt(3)Co外,强磁性使几何结构趋于扁平。由于需要与衬底良好匹配,石墨烯负载的四聚体的几何结构有很大不同。对于自由的Pt(3)Co,发现了较大的磁各向异性能量,其磁化方向的改变还会引起从高磁矩到低磁矩磁异构体的转变。对于所有其他自由四聚体,磁各向异性能量仅在3至5毫电子伏特/原子之间,对于石墨烯负载的四聚体进一步降低至0.4至3.8毫电子伏特/原子。由于吸附复合物的不对称结构,Pt(3)Fe/石墨烯的降低最为显著。对于Pt(3)Fe/石墨烯,磁化反转势垒仅在0.3毫电子伏特/原子左右,而对于PtFe(3)和Pt(3)Co约为3毫电子伏特/原子。总之,我们的结果表明几何自由度和磁自由度之间存在强相关性,并且有必要基于对所有几何和磁参数同时进行总能量优化来研究纳米结构的磁各向异性。