Boudaoud S, Rix H, Al Harrach M, Marin F
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2213-6. doi: 10.1109/EMBC.2014.6944058.
Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.
最近的研究指出,根据疲劳和肌肉力量增加等多种情况,表面肌电图(sEMG)数据的概率密度函数(PDF)可能会发生形状改变。基于这一观点,已经提出了一些标准,主要使用诸如偏度和峰度等高阶统计(HOS)参数来监测这些形状改变。在实验条件下,这些参数在估计过程中面临小样本量的问题。这种小样本量会在估计的HOS参数中引入误差,从而限制了对sEMG PDF形状的实时精确监测。最近,一种函数形式主义,即核心形状模型(CSM),已被用于分析PDF曲线的形状改变。在这项工作中,借鉴CSM方法,提出了稳健的函数统计量来模拟偏度和峰度行为。这些函数统计量结合了核密度估计和PDF形状距离,即使在小样本量的情况下也能评估形状改变。然后,使用蒙特卡罗模拟,在所提出的统计量在模拟肌肉收缩期间观察到的sEMG PDF形状行为的正态和对数正态PDF上进行了测试。根据获得的结果,函数统计量在小样本量影响方面似乎比HOS参数更稳健,并且在sEMG PDF形状筛选应用中更准确。