Suppr超能文献

在磁共振成像中估计大脑灰质-白质边界处的模糊度以检测局灶性皮质发育不良

Estimating blur at the brain gray-white matter boundary for FCD detection in MRI.

作者信息

Qu Xiaoxia, Platisa Ljiljana, Despotović Ivana, Kumcu Asli, Bai Tingzhu, Deblaere Karel, Philips Wilfried

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3321-4. doi: 10.1109/EMBC.2014.6944333.

Abstract

Focal cortical dysplasia (FCD) is a frequent cause of epilepsy and can be detected using brain magnetic resonance imaging (MRI). One important MRI feature of FCD lesions is the blurring of the gray-white matter boundary (GWB), previously modelled by the gradient strength. However, in the absence of additional FCD descriptors, current gradient-based methods may yield false positives. Moreover, they do not explicitly quantify the level of blur which prevents from using them directly in the process of automated FCD detection. To improve the detection of FCD lesions displaying blur, we develop a novel algorithm called iterating local searches on neighborhood (ILSN). The novelty is that it measures the width of the blurry region rather than the gradient strength. The performance of our method is compared with the gradient magnitude method using precision and recall measures. The experimental results, tested on MRI data of 8 real FCD patients, indicate that our method has higher ability to correctly identify the FCD blurring than the gradient method.

摘要

局灶性皮质发育不良(FCD)是癫痫的常见病因,可通过脑磁共振成像(MRI)检测出来。FCD病变的一个重要MRI特征是灰白质边界(GWB)模糊,此前曾通过梯度强度进行建模。然而,在没有其他FCD描述符的情况下,当前基于梯度的方法可能会产生假阳性。此外,它们没有明确量化模糊程度,这使得无法在自动FCD检测过程中直接使用这些方法。为了改进对显示模糊的FCD病变的检测,我们开发了一种名为邻域迭代局部搜索(ILSN)的新算法。其新颖之处在于它测量的是模糊区域的宽度而非梯度强度。我们将该方法的性能与使用精度和召回率指标的梯度幅度法进行了比较。在8例真实FCD患者的MRI数据上进行测试的实验结果表明,我们的方法比梯度法具有更高的正确识别FCD模糊的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验