Suppr超能文献

基于支持向量机的腰椎超声图像特征提取与分类

Feature extraction and classification for ultrasound images of lumbar spine with support vector machine.

作者信息

Yu Shuang, Tan Kok Kiong, Sng Ban Leong, Li Shengjin, Sia Alex Tiong Heng

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4659-62. doi: 10.1109/EMBC.2014.6944663.

Abstract

In this paper, we proposed a feature extraction and machine learning method for the classification of ultrasound images obtained from lumbar spine of pregnant patients in the transverse plane. A group of features, including matching values and positions, appearance of black pixels within predefined windows along the midline, are extracted from the ultrasound images using template matching and midline detection. Support vector machine (SVM) with Gaussian kernel is utilized to classify the bone images and interspinous images with optimal separation hyperplane. The SVM is trained with 800 images from 20 pregnant subjects and tested with 640 images from a separate set of 16 pregnant patients. A high success rate (97.25% on training set and 95.00% on test set) is achieved with the proposed method. The trained SVM model is further tested on 36 videos collected from 36 pregnant subjects and successfully identified the proper needle insertion site (interspinous region) on all of the cases. Therefore, the proposed method is able to identify the ultrasound images of lumbar spine in an automatic manner, so as to facilitate the anesthetists' work to identify the needle insertion point precisely and effectively.

摘要

在本文中,我们提出了一种特征提取和机器学习方法,用于对孕妇腰椎横断面超声图像进行分类。使用模板匹配和中线检测从超声图像中提取一组特征,包括匹配值和位置、沿中线预定义窗口内黑色像素的外观。利用具有高斯核的支持向量机(SVM)通过最优分离超平面来对骨骼图像和棘突间图像进行分类。SVM使用来自20名孕妇的800张图像进行训练,并使用来自另一组16名孕妇的640张图像进行测试。所提出的方法取得了较高的成功率(训练集上为97.25%,测试集上为95.00%)。训练好的SVM模型在从36名孕妇收集的36个视频上进一步测试,并成功识别了所有病例中的正确进针部位(棘突间区域)。因此,所提出的方法能够自动识别腰椎的超声图像,从而便于麻醉师准确有效地识别进针点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验