Suppr超能文献

一种用于心外膜干预的并联机器人。

A parallel wire robot for epicardial interventions.

作者信息

Costanza Adam D, Wood Nathan A, Passineau Michael J, Moraca Robert J, Bailey Stephen H, Yoshizumi Tomo, Riviere Cameron N

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6155-8. doi: 10.1109/EMBC.2014.6945034.

Abstract

This paper describes the design and preliminary testing of a planar parallel wire robot that adheres to the surface of the beating heart and provides a stable platform for minimally invasive epicardial therapies. The device is deployed through a small subxiphoid skin incision and attaches to the heart using suction. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive beating-heart surgery. The prototype design involves three vacuum chambers connected by two flexible arms. The chambers adhere to the epicardium, forming the vertices of a triangular base structure. Three cables connect a movable end-effector head to the three bases; the cables then pass out of the body to external actuators. The surgical tool moves within the triangular workspace to perform injections, ablation, or other tasks on the beating heart. Tests in vitro and in vivo were conducted to demonstrate the capabilities of the system. Tests in vivo successfully demonstrated the ability to deploy through a subxiphoid incision, adhere to the surface of the beating heart, move the surgical tool head within the robot's workspace, and perform injections into the myocardium.

摘要

本文描述了一种平面平行钢丝机器人的设计及初步测试,该机器人可附着于跳动的心脏表面,为微创心外膜治疗提供稳定平台。该设备通过小剑突下皮肤切口进行部署,并利用吸力附着于心脏。这种方法避免了微创心脏跳动手术中通常所需的机械稳定和肺萎陷。原型设计包括由两个柔性臂连接的三个真空腔。这些腔附着于心外膜,形成一个三角形基础结构的顶点。三根电缆将一个可移动的末端执行器头部连接到三个基座;然后电缆穿出身体连接到外部致动器。手术工具在三角形工作空间内移动,以对跳动的心脏进行注射、消融或其他操作。进行了体外和体内测试以证明该系统的能力。体内测试成功证明了通过剑突下切口进行部署、附着于跳动心脏表面、在机器人工作空间内移动手术工具头部以及向心肌内注射的能力。

相似文献

1
A parallel wire robot for epicardial interventions.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6155-8. doi: 10.1109/EMBC.2014.6945034.
2
Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart.
Comput Aided Surg. 2005 Jul;10(4):225-32. doi: 10.3109/10929080500230197.
3
Minimally invasive epicardial injections using a novel semiautonomous robotic device.
Circulation. 2008 Sep 30;118(14 Suppl):S115-20. doi: 10.1161/CIRCULATIONAHA.107.756049.
4
Introducer Design Concepts for an Epicardial Parallel Wire Robot.
Robot Surg. 2021 Sep 7;8:21-38. doi: 10.2147/RSRR.S327069. eCollection 2021.
5
Prototype epicardial crawling device for intrapericardial intervention on the beating heart.
Heart Surg Forum. 2004;7(6):E639-43. doi: 10.1532/HSF98.20041057.
6
A novel highly articulated robotic surgical system for epicardial ablation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:250-3. doi: 10.1109/IEMBS.2008.4649137.
7
Percutaneous subxiphoid access to the epicardium using a miniature crawling robotic device.
Innovations (Phila). 2006 Fall;1(5):227-31. doi: 10.1097/01.IMI.0000240673.14388.fc.
8
A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.
Surg Endosc. 2017 Aug;31(8):3152-3158. doi: 10.1007/s00464-016-5340-9. Epub 2016 Nov 17.
9
Cable Tension Optimization for an Epicardial Parallel Wire Robot.
J Med Device. 2023 Jun 1;17(2):021006. doi: 10.1115/1.4056866. Epub 2023 Apr 17.
10
Improved traction for a mobile robot traveling on the heart.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:339-42. doi: 10.1109/IEMBS.2006.259532.

引用本文的文献

1
Cable Tension Optimization for an Epicardial Parallel Wire Robot.
J Med Device. 2023 Jun 1;17(2):021006. doi: 10.1115/1.4056866. Epub 2023 Apr 17.
2
Introducer Design Concepts for an Epicardial Parallel Wire Robot.
Robot Surg. 2021 Sep 7;8:21-38. doi: 10.2147/RSRR.S327069. eCollection 2021.
3
Auto-Calibration for a Planar Epicardial Wire Robot.
Proc IEEE Annu Northeast Bioeng Conf. 2015 Apr;2015. doi: 10.1109/NEBEC.2015.7117150. Epub 2015 Jun 4.
4
Physiological motion modeling for organ-mounted robots.
Int J Med Robot. 2017 Dec;13(4). doi: 10.1002/rcs.1805. Epub 2017 Feb 17.
5
Parallel Force/Position Control of an Epicardial Parallel Wire Robot.
IEEE Robot Autom Lett. 2016 Jul;1(2):1186-1191. doi: 10.1109/LRA.2016.2530162. Epub 2016 Feb 15.
6
Toward hybrid force/position control for the Cerberus epicardial robot.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7776-9. doi: 10.1109/EMBC.2015.7320195.

本文引用的文献

1
Current readings: Status of robotic cardiac surgery.
Semin Thorac Cardiovasc Surg. 2013 Summer;25(2):165-70. doi: 10.1053/j.semtcvs.2013.07.003.
3
Progress and prospects: hurdles to cardiovascular gene therapy clinical trials.
Gene Ther. 2011 Aug;18(8):743-9. doi: 10.1038/gt.2011.43. Epub 2011 Apr 14.
4
Rescuing the failing heart by targeted gene transfer.
J Am Coll Cardiol. 2011 Mar 8;57(10):1169-80. doi: 10.1016/j.jacc.2010.11.023.
5
Robotic cardiac surgery.
Curr Opin Anaesthesiol. 2011 Feb;24(1):77-85. doi: 10.1097/ACO.0b013e328342052d.
6
A Miniature Mobile Robot for Navigation and Positioning on the Beating Heart.
IEEE Trans Robot. 2009;25(5):1109-1124. doi: 10.1109/tro.2009.2027375.
7
Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure.
J Card Fail. 2008 Jun;14(5):355-67. doi: 10.1016/j.cardfail.2008.02.005. Epub 2008 May 27.
8
Minimally invasive cardiac surgery.
Surg Endosc. 2006 Apr;20 Suppl 2:S488-92. doi: 10.1007/s00464-006-0110-8. Epub 2006 Mar 23.
9
Off-pump coronary artery bypass grafting decreases risk-adjusted mortality and morbidity.
Ann Thorac Surg. 2001 Oct;72(4):1282-8; discussion 1288-9. doi: 10.1016/s0003-4975(01)03006-5.
10
Minimally invasive and robotic surgery.
JAMA. 2001 Feb 7;285(5):568-72. doi: 10.1001/jama.285.5.568.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验