Suppr超能文献

海蛞蝓软体动物丽叶海牛爬行和游泳的昼夜节律。

Circadian rhythms of crawling and swimming in the nudibranch mollusc Melibe leonina.

作者信息

Newcomb James M, Kirouac Lauren E, Naimie Amanda A, Bixby Kimberly A, Lee Colin, Malanga Stephanie, Raubach Maureen, Watson Winsor H

机构信息

Department of Biology and Health Science, New England College, Henniker, New Hampshire 03242;

Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824.

出版信息

Biol Bull. 2014 Dec;227(3):263-73. doi: 10.1086/BBLv227n3p263.

Abstract

Daily rhythms of activity driven by circadian clocks are expressed by many organisms, including molluscs. We initiated this study, with the nudibranch Melibe leonina, with four goals in mind: (1) determine which behaviors are expressed with a daily rhythm; (2) investigate which of these rhythmic behaviors are controlled by a circadian clock; (3) determine if a circadian clock is associated with the eyes or optic ganglia of Melibe, as it is in several other gastropods; and (4) test the hypothesis that Melibe can use extraocular photoreceptors to synchronize its daily rhythms to natural light-dark cycles. To address these goals, we analyzed the behavior of 55 animals exposed to either artificial or natural light-dark cycles, followed by constant darkness. We also repeated this experiment using 10 animals that had their eyes removed. Individuals did not express daily rhythms of feeding, but they swam and crawled more at night. This pattern of locomotion persisted in constant darkness, indicating the presence of a circadian clock. Eyeless animals also expressed a daily rhythm of locomotion, with more locomotion at night. The fact that eyeless animals synchronized their locomotion to the light-dark cycle suggests that they can detect light using extraocular photoreceptors. However, in constant darkness, these rhythms deteriorated, suggesting that the clock neurons that influence locomotion may be located in, or near, the eyes. Thus, locomotion in Melibe appears to be influenced by both ocular and extraocular photoreceptors, although the former appear to have a greater influence on the expression of circadian rhythms.

摘要

包括软体动物在内的许多生物都表现出由生物钟驱动的日常活动节律。我们以海蛞蝓Melibe leonina开展了这项研究,心中有四个目标:(1)确定哪些行为呈现出日常节律;(2)研究这些节律行为中哪些受生物钟控制;(3)确定Melibe的眼睛或视神经节是否像其他几种腹足动物那样与生物钟相关联;(4)检验Melibe可以利用眼外光感受器将其日常节律与自然昼夜周期同步的假设。为了实现这些目标,我们分析了55只暴露于人工或自然昼夜周期、随后处于持续黑暗环境中的动物的行为。我们还用10只摘除了眼睛的动物重复了这个实验。个体没有表现出进食的日常节律,但它们在夜间游动和爬行得更多。这种运动模式在持续黑暗中持续存在,表明存在生物钟。无眼动物也表现出日常运动节律,夜间运动更多。无眼动物能使其运动与昼夜周期同步这一事实表明它们可以利用眼外光感受器检测光线。然而,在持续黑暗中,这些节律会变差,这表明影响运动的生物钟神经元可能位于眼睛内或眼睛附近。因此,Melibe的运动似乎受到眼内和眼外光感受器的影响,尽管前者似乎对昼夜节律的表达影响更大。

相似文献

1
Circadian rhythms of crawling and swimming in the nudibranch mollusc Melibe leonina.
Biol Bull. 2014 Dec;227(3):263-73. doi: 10.1086/BBLv227n3p263.
2
Serotonin influences locomotion in the nudibranch mollusc Melibe leonina.
Biol Bull. 2011 Jun;220(3):155-60. doi: 10.1086/BBLv220n3p155.
3
Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
Chronobiol Int. 2013 Jun;30(5):649-61. doi: 10.3109/07420528.2013.775143. Epub 2013 May 20.
4
Non-ocular circadian oscillators and photoreceptors modulate long term memory formation in Aplysia.
J Biol Rhythms. 2006 Aug;21(4):245-55. doi: 10.1177/0748730406289890.
5
Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.
Comp Biochem Physiol A Mol Integr Physiol. 2018 Sep;223:52-59. doi: 10.1016/j.cbpa.2018.05.002. Epub 2018 May 9.
6
miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior.
J Neurosci. 2016 Feb 10;36(6):2007-13. doi: 10.1523/JNEUROSCI.3286-15.2016.
7
Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei).
Comp Biochem Physiol A Mol Integr Physiol. 2016 Sep;199:54-61. doi: 10.1016/j.cbpa.2016.05.001. Epub 2016 May 5.
8
Regulation of prokineticin 2 expression by light and the circadian clock.
BMC Neurosci. 2005 Mar 11;6:17. doi: 10.1186/1471-2202-6-17.
9
Circadian rhythms of ocular melatonin in the wrasse Halichoeres tenuispinnis, a labrid teleost.
Gen Comp Endocrinol. 2006 Jan 1;145(1):32-8. doi: 10.1016/j.ygcen.2005.06.010. Epub 2005 Aug 22.

引用本文的文献

1
Clocks at a snail pace: biological rhythms in terrestrial gastropods.
PeerJ. 2024 Oct 29;12:e18318. doi: 10.7717/peerj.18318. eCollection 2024.
2
Neural mechanism of circadian clock-based photoperiodism in insects and snails.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):601-625. doi: 10.1007/s00359-023-01662-6. Epub 2023 Aug 18.
3
Coordination of Locomotion by Serotonergic Neurons in the Predatory Gastropod .
J Neurosci. 2023 May 17;43(20):3647-3657. doi: 10.1523/JNEUROSCI.1386-22.2023. Epub 2023 Apr 24.
4
In the sea slug the posterior nerves communicate stomach distention to inhibit feeding and modify oral hood movements.
Front Physiol. 2022 Nov 23;13:1047106. doi: 10.3389/fphys.2022.1047106. eCollection 2022.
5
The Digestive Diverticula in the Carnivorous Nudibranch, , Do Not Contain Photosynthetic Symbionts.
Integr Org Biol. 2021 May 21;3(1):obab015. doi: 10.1093/iob/obab015. eCollection 2021.
6
The Distribution and Possible Roles of Small Cardioactive Peptide in the Nudibranch .
Integr Org Biol. 2020 May 29;2(1):obaa016. doi: 10.1093/iob/obaa016. eCollection 2020.
8
Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.
Comp Biochem Physiol A Mol Integr Physiol. 2018 Sep;223:52-59. doi: 10.1016/j.cbpa.2018.05.002. Epub 2018 May 9.

本文引用的文献

2
The cryptochromes: blue light photoreceptors in plants and animals.
Annu Rev Plant Biol. 2011;62:335-64. doi: 10.1146/annurev-arplant-042110-103759.
3
Circadian organization of behavior and physiology in Drosophila.
Annu Rev Physiol. 2010;72:605-24. doi: 10.1146/annurev-physiol-021909-135815.
4
Circadian clocks: regulators of endocrine and metabolic rhythms.
J Endocrinol. 2007 Nov;195(2):187-98. doi: 10.1677/JOE-07-0378.
5
Localization of a circadian pacemaker in the eye of a mollusc, bulla.
Science. 1982 Jul 9;217(4555):155-7. doi: 10.1126/science.217.4555.155.
6
Central pattern generator for swimming in Melibe.
J Exp Biol. 2005 Apr;208(Pt 7):1347-61. doi: 10.1242/jeb.01500.
7
Exogenous and endogenous components in circadian rhythms.
Cold Spring Harb Symp Quant Biol. 1960;25:11-28. doi: 10.1101/sqb.1960.025.01.004.
8
Swimming behavior of the nudibranch Melibe leonina.
Biol Bull. 2002 Oct;203(2):144-51. doi: 10.2307/1543383.
9
Molecular bases for circadian clocks.
Cell. 1999 Jan 22;96(2):271-90. doi: 10.1016/s0092-8674(00)80566-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验