Suppr超能文献

心外膜超声图像中冠状动脉吻合口的自动检测

Automatic detection of coronary artery anastomoses in epicardial ultrasound images.

作者信息

Jørgensen Alex Skovsbo, Schmidt Samuel Emil, Staalsen Niels-Henrik, Østergaard Lasse Riis

机构信息

Department of Health Science and Technology, Aalborg University, Fredrik Bajersvej 7D2, 9220, Aalborg, Denmark,

出版信息

Int J Comput Assist Radiol Surg. 2015 Aug;10(8):1313-23. doi: 10.1007/s11548-014-1144-3. Epub 2015 Jan 9.

Abstract

PURPOSE

Epicardial ultrasound (EUS) can be used to assess the quality of coronary artery bypass graft surgery (CABG) anastomoses by determining stenotic rates. Currently, no objective quantitative methods are available for the analysis of EUS images. Therefore, surgeons have to be trained in interpreting EUS images, which may limit the use of EUS in clinical practice. Automatic detection of vessel structures can enable the objective and quantitative quality assessment of anastomoses without user interaction to facilitate the revision of anastomoses during the primary surgery.

METHODS

An automatic vessel detection algorithm extracted and detected image regions that uniquely intersected with the vessel lumen of anastomotic structures. First, an initial pixel-based segmentation was performed from regional minimums using a watershed segmentation and an adaptive thresholding approach. A region-based merging step was then performed to merge oversegmented vessel structures using a Bayesian classification of different region combinations constructed from the pixel-based segmentations. Finally, a vessel classification step was performed on the extracted regions after the region-based merging to determine the probabilities that the regions contained vessel structures.

RESULTS

The performance of the vessel classifier was tested using m-fold cross-validation of 320 EUS images containing anastomotic vessel structures from 16 anastomoses made on healthy porcine vessels. An area under the curve of 0.966 (95 % CI 0.951-0.984) and 0.989 (95 % CI 0.985-0.993, p < 0.001) of a precision-recall and receiver operator characteristic curve, respectively, was obtained when detecting vessel regions extracted from the EUS images.

CONCLUSIONS

The vessel detection algorithm can detect vessel regions in EUS images at a high accuracy. It can be used to enable the automatic analysis of EUS images for the quality assessment of CABG anastomoses.

摘要

目的

心外膜超声(EUS)可通过测定狭窄率来评估冠状动脉旁路移植术(CABG)吻合口的质量。目前,尚无用于分析EUS图像的客观定量方法。因此,外科医生必须接受EUS图像解读方面的培训,这可能会限制EUS在临床实践中的应用。自动检测血管结构能够在无需用户干预的情况下对吻合口进行客观定量质量评估,从而便于在初次手术期间对吻合口进行修正。

方法

一种自动血管检测算法提取并检测与吻合结构血管腔唯一相交的图像区域。首先,使用分水岭分割和自适应阈值处理方法从区域最小值进行基于像素的初始分割。然后执行基于区域的合并步骤,使用从基于像素的分割构建的不同区域组合的贝叶斯分类来合并过度分割的血管结构。最后,在基于区域的合并之后,对提取的区域执行血管分类步骤,以确定这些区域包含血管结构的概率。

结果

使用包含来自健康猪血管上16个吻合口的吻合血管结构的320幅EUS图像进行m折交叉验证,测试了血管分类器的性能。在检测从EUS图像中提取的血管区域时,精确召回率曲线和受试者工作特征曲线的曲线下面积分别为0.966(95%CI 0.951 - 0.984)和0.989(95%CI 0.985 - 0.993,p < 0.001)。

结论

血管检测算法能够高精度地检测EUS图像中的血管区域。它可用于对EUS图像进行自动分析,以评估CABG吻合口的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验