Suppr超能文献

通过对膜活性肽进行工程化改造使其具有pH敏感性来测试理性设计的极限。

Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

作者信息

Wiedman Gregory, Wimley William C, Hristova Kalina

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA.

出版信息

Biochim Biophys Acta. 2015 Apr;1848(4):951-7. doi: 10.1016/j.bbamem.2014.12.023. Epub 2015 Jan 5.

Abstract

In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field.

摘要

在这项工作中,我们试图合理设计膜活性肽,这些肽在低pH值下被触发,从而在脂质双层中形成大分子尺寸的孔。这类肽在生物技术和纳米医学中作为癌症治疗剂或促进大分子从内体释放的药物递送载体可能具有广泛的用途。我们的合理设计方法是将形成允许大分子通过的大孔的pH非依赖性肽MelP5的特性,与两种pH依赖性膜活性肽pHlip和GALA的特性相结合。我们以pHlip和GALA上酸性残基的分布为指导,将酸性氨基酸插入MelP5的两亲螺旋中,创建了两个杂交序列MelP5_Δ4和MelP5_Δ6。我们表明,新肽以pH依赖性方式与脂质双层结合并获得二级结构。这些肽还以pH依赖性方式使双层不稳定,使得脂质囊泡仅在低pH值下释放小分子ANTS/DPX。因此,我们成功设计了pH触发的成孔肽。然而,在任何条件下均未观察到大分子释放。因此,我们通过在其序列中引入pH敏感性消除了MelP5独特的大分子成孔特性。我们得出结论,pHlip、GALA和MelP5的特性是可加性的,但只是部分可加。我们认为这种缺乏可加性是新型膜活性肽合理设计中的一个限制,并且高通量发现方法对于该领域的持续进展至关重要。

相似文献

1
Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.
Biochim Biophys Acta. 2015 Apr;1848(4):951-7. doi: 10.1016/j.bbamem.2014.12.023. Epub 2015 Jan 5.
2
Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide.
J Am Chem Soc. 2014 Mar 26;136(12):4724-31. doi: 10.1021/ja500462s. Epub 2014 Mar 13.
3
Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers.
J Am Chem Soc. 2019 Apr 24;141(16):6706-6718. doi: 10.1021/jacs.9b01970. Epub 2019 Apr 10.
4
Single channel planar lipid bilayer recordings of the melittin variant MelP5.
Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2051-2057. doi: 10.1016/j.bbamem.2017.07.005. Epub 2017 Jul 15.
5
Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides.
J Am Chem Soc. 2018 May 23;140(20):6441-6447. doi: 10.1021/jacs.8b03026. Epub 2018 May 9.
6
GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
Adv Drug Deliv Rev. 2004 Apr 23;56(7):967-85. doi: 10.1016/j.addr.2003.10.041.
7
Design of a pH-sensitive pore-forming peptide with improved performance.
J Pept Res. 2004 Jan;63(1):9-16. doi: 10.1046/j.1399-3011.2004.00098.x.
8
Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers.
Langmuir. 2018 Jul 17;34(28):8393-8399. doi: 10.1021/acs.langmuir.8b00804. Epub 2018 Jul 9.
9
What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives.
Biophys J. 2020 Apr 21;118(8):1901-1913. doi: 10.1016/j.bpj.2020.02.024. Epub 2020 Mar 3.
10
Templated assembly of the pH-sensitive membrane-lytic peptide GALA.
J Pept Res. 2004 Jun;63(6):451-9. doi: 10.1111/j.1399-3011.2004.00149.x.

引用本文的文献

1
The difference between MelP5 and melittin membrane poration.
Sci Rep. 2025 Mar 3;15(1):7442. doi: 10.1038/s41598-025-91951-8.
2
pH-Responsive Peptide Nanoparticles Deliver Macromolecules to Cells via Endosomal Membrane Nanoporation.
ACS Nano. 2024 Dec 17;18(50):33922-33936. doi: 10.1021/acsnano.4c07525. Epub 2024 Dec 9.
3
Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides.
PLoS One. 2024 Sep 3;19(9):e0305848. doi: 10.1371/journal.pone.0305848. eCollection 2024.
4
De novo design of monomeric helical bundles for pH-controlled membrane lysis.
Protein Sci. 2023 Nov;32(11):e4769. doi: 10.1002/pro.4769.
5
Predicting Membrane-Active Peptide Dynamics in Fluidic Lipid Membranes.
Methods Mol Biol. 2022;2405:115-136. doi: 10.1007/978-1-0716-1855-4_6.
6
Integrated Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses Triple-Negative Breast Cancer.
Adv Sci (Weinh). 2022 May;9(13):e2105506. doi: 10.1002/advs.202105506. Epub 2022 Mar 4.
7
Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides.
Front Med Technol. 2021 Jan 11;2:621572. doi: 10.3389/fmedt.2020.621572. eCollection 2020.
8
Applications and evolution of melittin, the quintessential membrane active peptide.
Biochem Pharmacol. 2021 Nov;193:114769. doi: 10.1016/j.bcp.2021.114769. Epub 2021 Sep 17.
9
Tuning of a Membrane-Perforating Antimicrobial Peptide to Selectively Target Membranes of Different Lipid Composition.
J Membr Biol. 2021 Feb;254(1):75-96. doi: 10.1007/s00232-021-00174-1. Epub 2021 Feb 10.
10
pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity.
Biophys J. 2021 Feb 16;120(4):618-630. doi: 10.1016/j.bpj.2021.01.010. Epub 2021 Jan 16.

本文引用的文献

1
Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide.
J Am Chem Soc. 2014 Mar 26;136(12):4724-31. doi: 10.1021/ja500462s. Epub 2014 Mar 13.
2
Aspartate embedding depth affects pHLIP's insertion pKa.
Biochemistry. 2013 Jul 9;52(27):4595-604. doi: 10.1021/bi400252k. Epub 2013 Jun 27.
3
Antimicrobial peptides: to membranes and beyond.
Expert Opin Drug Discov. 2009 Jun;4(6):659-71. doi: 10.1517/17460440902992888.
4
pHLIP®-mediated delivery of PEGylated liposomes to cancer cells.
J Control Release. 2013 May 10;167(3):228-37. doi: 10.1016/j.jconrel.2013.01.037. Epub 2013 Feb 15.
5
The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization.
Biochim Biophys Acta. 2013 May;1828(5):1357-64. doi: 10.1016/j.bbamem.2013.01.021. Epub 2013 Feb 4.
6
Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening.
J Am Chem Soc. 2012 Aug 1;134(30):12732-41. doi: 10.1021/ja3042004. Epub 2012 Jul 18.
7
Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.
J Am Chem Soc. 2011 Jun 15;133(23):8995-9004. doi: 10.1021/ja2017416. Epub 2011 May 19.
8
Antimicrobial peptides: successes, challenges and unanswered questions.
J Membr Biol. 2011 Jan;239(1-2):27-34. doi: 10.1007/s00232-011-9343-0. Epub 2011 Jan 12.
9
pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents.
Mol Membr Biol. 2010 Oct;27(7):341-52. doi: 10.3109/09687688.2010.509285. Epub 2010 Oct 13.
10
Describing the mechanism of antimicrobial peptide action with the interfacial activity model.
ACS Chem Biol. 2010 Oct 15;5(10):905-17. doi: 10.1021/cb1001558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验