Gupta Soham, Neogi Ujjwal, Srinivasa Hiresave, Shet Anita
Division of Clinical Virology, Department of Microbiology, St. John's Medical College Hospital, Bangalore, India.
Intervirology. 2015;58(1):1-5. doi: 10.1159/000369017. Epub 2015 Jan 7.
Currently, there is no consensus on the genotypic tools to be used for tropism analysis in HIV-1 subtype C strains. Thus, the aim of the study was to evaluate the performance of the different V3 loop-based genotypic algorithms available. We compiled a dataset of 645 HIV-1 subtype C V3 loop sequences of known coreceptor phenotypes (531 R5-tropic/non-syncytium-inducing and 114 X4-tropic/R5X4-tropic/syncytium-inducing sequences) from the Los Alamos database (http://www.hiv.lanl.gov/) and previously published literature. Coreceptor usage was predicted based on this dataset using different software-based machine-learning algorithms as well as simple classical rules. All the sophisticated machine-learning methods showed a good concordance of above 85%. Geno2Pheno (false-positive rate cutoff of 5-15%) and CoRSeqV3-C were found to have a high predicting capability in determining both HIV-1 subtype C X4-tropic and R5-tropic strains. The current sophisticated genotypic tropism tools based on V3 loop perform well for tropism prediction in HIV-1 subtype C strains and can be used in clinical settings.
目前,对于用于HIV-1 C亚型毒株嗜性分析的基因分型工具尚无共识。因此,本研究的目的是评估现有的不同基于V3环的基因分型算法的性能。我们从洛斯阿拉莫斯数据库(http://www.hiv.lanl.gov/)和先前发表的文献中汇编了一个包含645个已知共受体表型的HIV-1 C亚型V3环序列的数据集(531个R5嗜性/非合胞体诱导序列和114个X4嗜性/R5X4嗜性/合胞体诱导序列)。基于该数据集,使用不同的基于软件的机器学习算法以及简单的经典规则预测共受体使用情况。所有复杂的机器学习方法均显示出高于85%的良好一致性。发现Geno2Pheno(假阳性率临界值为5-15%)和CoRSeqV3-C在确定HIV-1 C亚型X4嗜性和R5嗜性毒株方面具有较高的预测能力。当前基于V3环的复杂基因分型嗜性工具在HIV-1 C亚型毒株的嗜性预测中表现良好,可用于临床环境。