Mala S, Latha K
Department of Computer Science and Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu 620 024, India.
Comput Math Methods Med. 2014;2014:713818. doi: 10.1155/2014/713818. Epub 2014 Dec 9.
Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.
在不同的需求中都需要进行活动识别,例如侦察系统、患者监测和人机界面。特征选择在活动识别、数据挖掘和机器学习中起着重要作用。在选择特征子集时,一种高效的进化算法——差分进化(DE),一种非常有效的优化器,被用于从使用眼电图(EOG)的眼动中找到信息丰富的特征。许多研究人员在人机交互中使用EOG信号和各种计算智能方法来分析眼动。所提出的系统涉及使用基于清晰度的特征、最小冗余最大相关性特征和基于差分进化的特征来分析EOG信号。这项工作更多地集中在基于DE的特征选择算法上,以改进无误活动识别的分类。