Suppr超能文献

mRNA稳定性的节律性调控调节小鼠Period3 mRNA的昼夜节律振幅。

Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA.

作者信息

Kim Sung-Hoon, Lee Kyung-Ha, Kim Do-Yeon, Kwak Eunyee, Kim Seunghwan, Kim Kyong-Tai

机构信息

School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.

出版信息

J Neurochem. 2015 Mar;132(6):642-56. doi: 10.1111/jnc.13027. Epub 2015 Mar 9.

Abstract

The daily oscillations observed in most living organisms are endogenously generated with a period of 24 h, and the underlying structure of periodic oscillation is an autoregulatory transcription-translation feedback loop. The mechanisms of untranslated region (UTR)-mediated post-transcriptional regulation (e.g., mRNA degradation and internal ribosomal entry site (IRES)-mediated translation) have been suggested to fine-tune the expression of clock genes. Mouse Period3 (mPer3) is one of the paralogs of Period gene and its function is important in peripheral clocks and sleep physiology. mPer3 mRNA displays a circadian oscillation as well as a circadian phase-dependent stability, while the stability regulators still remain unknown. In this study, we identify three proteins - heterogeneous nuclear ribonucleoprotein (hnRNP) K, polypyrimidine tract-binding protein (PTB), and hnRNP D - that bind to mPer3 mRNA 3'-UTR. We show that hnRNP K is a stabilizer that increases the amplitude of circadian mPer3 mRNA oscillation and hnRNP D is a destabilizer that decreases it, while PTB exhibits no effect on mPer3 mRNA expression. Our experiments describe their cytoplasmic roles for the mRNA stability regulation and the circadian amplitude formation. Moreover, our mathematical model suggests a mechanism through which post-transcriptional mRNA stability modulation provides not only the flexibility of oscillation amplitude, but also the robustness of the period and the phase for circadian mPer3 expression. Mouse Period3 (mPer3) is one of well-known clock genes. We identified three 3'-UTR-binding proteins that modulate the mRNA stability, and they influenced to the amplitude of circadian mPer3 mRNA oscillation. Our mathematical model not only showed the relationship between mRNA stability and its oscillation profile but provided the molecular mechanism for the robustness of the period and the phase in circadian oscillation. hnK, heterogeneous nuclear ribonucleoprotein (hnRNP) K; hnD, hnRNP D; PTB, polypyrimidine tract-binding protein.

摘要

大多数生物体中观察到的每日振荡是由内源性产生的,周期为24小时,周期性振荡的潜在结构是一个自动调节的转录-翻译反馈环。非翻译区(UTR)介导的转录后调控机制(如mRNA降解和内部核糖体进入位点(IRES)介导的翻译)已被认为可微调生物钟基因的表达。小鼠周期蛋白3(mPer3)是周期基因的旁系同源物之一,其功能在外周生物钟和睡眠生理中很重要。mPer3 mRNA表现出昼夜节律振荡以及昼夜节律相位依赖性稳定性,而稳定性调节因子仍然未知。在本研究中,我们鉴定出三种与mPer3 mRNA 3'-UTR结合的蛋白质——异质性细胞核核糖核蛋白(hnRNP)K、多嘧啶序列结合蛋白(PTB)和hnRNP D。我们发现hnRNP K是一种稳定剂,可增加昼夜节律性mPer3 mRNA振荡的幅度,而hnRNP D是一种去稳定剂,可降低其幅度,而PTB对mPer3 mRNA表达没有影响。我们的实验描述了它们在mRNA稳定性调控和昼夜节律幅度形成中的细胞质作用。此外,我们的数学模型提出了一种机制,通过该机制转录后mRNA稳定性调节不仅提供了振荡幅度的灵活性,还提供了昼夜节律性mPer3表达的周期和相位的稳健性。小鼠周期蛋白3(mPer3)是著名的生物钟基因之一。我们鉴定出三种调节mRNA稳定性的3'-UTR结合蛋白,它们影响昼夜节律性mPer3 mRNA振荡的幅度。我们的数学模型不仅显示了mRNA稳定性与其振荡谱之间的关系,还提供了昼夜节律振荡中周期和相位稳健性的分子机制。hnK,异质性细胞核核糖核蛋白(hnRNP)K;hnD,hnRNP D;PTB,多嘧啶序列结合蛋白 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验