IEEE Trans Cybern. 2015 Dec;45(12):2853-67. doi: 10.1109/TCYB.2014.2387277. Epub 2015 Jan 13.
Multiagent learning (MAL) is a promising technique for agents to learn efficient coordinated behaviors in multiagent systems (MASs). In MAL, concurrent multiple distributed learning processes can make the learning environment nonstationary for each individual learner. Developing an efficient learning approach to coordinate agents' behaviors in this dynamic environment is a difficult problem, especially when agents do not know the domain structure and have only local observability of the environment. In this paper, a coordinated MAL approach is proposed to enable agents to learn efficient coordinated behaviors by exploiting agent independence in loosely coupled MASs. The main feature of the proposed approach is to explicitly quantify and dynamically adapt agent independence during learning so that agents can make a trade-off between a single-agent learning process and a coordinated learning process for an efficient decision making. The proposed approach is employed to solve two-robot navigation problems in different scales of domains. Experimental results show that agents using the proposed approach can learn to act in concert or independently in different areas of the environment, which results in great computational savings and near optimal performance.
多智能体学习(MAL)是一种很有前途的技术,可以使智能体在多智能体系统(MASs)中学习到有效的协作行为。在 MAL 中,并发的多个分布式学习过程会使每个智能体的学习环境变得不稳定。在这种动态环境中,开发一种有效的学习方法来协调智能体的行为是一个难题,特别是当智能体不知道域结构,并且只能对环境进行局部观察时。在本文中,提出了一种协调的 MAL 方法,通过在松耦合的 MASs 中利用智能体独立性,使智能体能够学习到有效的协作行为。所提出方法的主要特点是在学习过程中明确量化并动态适应智能体独立性,以便智能体能够在单智能体学习过程和协作学习过程之间进行权衡,从而做出有效的决策。所提出的方法用于解决不同规模域中的两个机器人导航问题。实验结果表明,使用所提出方法的智能体可以在环境的不同区域中协调一致地或独立地行动,从而实现了巨大的计算节省和接近最优的性能。