Suppr超能文献

患者来源的胶质母细胞瘤异种移植模型的蛋白质组学分析鉴定出具有激活型表皮生长因子受体(EGFR)的亚群:对药物开发的意义。

Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development.

作者信息

Brown Kristine E, Chagoya Gustavo, Kwatra Shawn G, Yen Timothy, Keir Stephen T, Cooter Mary, Hoadley Katherine A, Rasheed Ahmed, Lipp Eric S, Mclendon Roger, Ali-Osman Francis, Bigner Darell D, Sampson John H, Kwatra Madan M

机构信息

School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.

出版信息

J Neurochem. 2015 Jun;133(5):730-8. doi: 10.1111/jnc.13032. Epub 2015 Feb 12.

Abstract

The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre-clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR. The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. We validated proteomic profiles using patient-derived glioblastoma xenografts (PDGX), characterizing 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. Proteins found to be associated with high EGFR activity represent potential biomarkers for GBM monitoring.

摘要

开发抑制胶质母细胞瘤(GBM)生长的药物需要可靠的临床前模型。迄今为止,尚未对广泛使用的患者来源的胶质母细胞瘤异种移植模型(PDGX)进行蛋白质组水平的验证。在本研究中,我们根据基于癌症基因组图谱标准的亚型分类、TP53、PTEN、IDH 1/2和TERT启动子基因分析、EGFR扩增状态,对20个PDGX模型进行了特征描述,并将它们的蛋白质组图谱与其亲本肿瘤的图谱进行了比较。这20个PDGX属于癌症基因组图谱四种亚型中的三种:八个经典型、八个间充质型和四个神经前体细胞型;无神经型。在20个异种移植模型中有9个观察到EGFR基因扩增,其中3个携带EGFRvIII突变。然后,我们对PDGX进行了蛋白质组分析,分析了包括EGFR在内的几种蛋白质的表达/活性。在Y1068位点磷酸化的EGFR水平在PDGX样本之间差异很大,这种模式在原发性GBM中也可见。将20个PDGX分为高(n = 5)和低(n = 15)两组,确定了一组与高EGFR活性相关的蛋白质。因此,具有高EGFR活性的PDGX代表了一种优秀的临床前模型,可用于为一部分肿瘤具有高EGFR活性特征的GBM患者开发治疗方法。此外,可以监测发现与高EGFR活性相关的蛋白质,以评估靶向EGFR的有效性。开发抑制胶质母细胞瘤(GBM)生长的药物需要可靠的临床前模型。我们使用患者来源的胶质母细胞瘤异种移植模型(PDGX)验证了蛋白质组图谱,根据基于癌症基因组图谱(TCGA)标准的亚型分类、TP53、PTEN、IDH 1/2和TERT启动子基因分析、EGFR扩增状态,对20个PDGX模型进行了特征描述,并将它们的蛋白质组图谱与其亲本肿瘤的图谱进行了比较。发现与高EGFR活性相关的蛋白质代表了用于GBM监测的潜在生物标志物。

相似文献

8
Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma.
PLoS One. 2014 Aug 1;9(8):e103327. doi: 10.1371/journal.pone.0103327. eCollection 2014.
9
Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.
Mol Cell Proteomics. 2012 Dec;11(12):1724-40. doi: 10.1074/mcp.M112.019984. Epub 2012 Sep 10.

引用本文的文献

1
A heterogeneous pharmaco-transcriptomic landscape induced by targeting a single oncogenic kinase.
bioRxiv. 2024 Apr 10:2024.04.08.587960. doi: 10.1101/2024.04.08.587960.
2
GZ17-6.02 Inhibits the Growth of EGFRvIII+ Glioblastoma.
Int J Mol Sci. 2022 Apr 10;23(8):4174. doi: 10.3390/ijms23084174.
3
Preclinical and Early Clinical Development of PTC596, a Novel Small-Molecule Tubulin-Binding Agent.
Mol Cancer Ther. 2021 Oct;20(10):1846-1857. doi: 10.1158/1535-7163.MCT-20-0774. Epub 2021 Jul 26.
4
Efficacy of osimertinib against EGFRvIII+ glioblastoma.
Oncotarget. 2020 Jun 2;11(22):2074-2082. doi: 10.18632/oncotarget.27599.
6
Proteogenomic integration reveals therapeutic targets in breast cancer xenografts.
Nat Commun. 2017 Mar 28;8:14864. doi: 10.1038/ncomms14864.
7
Interrogating open issues in cancer precision medicine with patient-derived xenografts.
Nat Rev Cancer. 2017 Apr;17(4):254-268. doi: 10.1038/nrc.2016.140. Epub 2017 Jan 20.
8
A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma.
Curr Cancer Drug Targets. 2017;17(3):290-296. doi: 10.2174/1568009616666161227091522.
9
Proteomic Characterization of Head and Neck Cancer Patient-Derived Xenografts.
Mol Cancer Res. 2016 Mar;14(3):278-86. doi: 10.1158/1541-7786.MCR-15-0354. Epub 2015 Dec 18.

本文引用的文献

2
Quantitative phenotypic and pathway profiling guides rational drug combination strategies.
Front Pharmacol. 2014 May 28;5:118. doi: 10.3389/fphar.2014.00118. eCollection 2014.
3
EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing.
Cancer Discov. 2014 Aug;4(8):956-71. doi: 10.1158/2159-8290.CD-13-0879. Epub 2014 Jun 3.
4
Preparation and use of reverse protein microarrays.
Curr Protoc Protein Sci. 2014 Feb 3;75:27.7.1-27.7.29. doi: 10.1002/0471140864.ps2707s75.
5
EGFRvIII--a stable target for anti-EGFRvIII therapy.
Anticancer Res. 2013 Dec;33(12):5343-8.
8
Using the molecular classification of glioblastoma to inform personalized treatment.
J Pathol. 2014 Jan;232(2):165-77. doi: 10.1002/path.4282.
9
Glioblastoma: from molecular pathology to targeted treatment.
Annu Rev Pathol. 2014;9:1-25. doi: 10.1146/annurev-pathol-011110-130324. Epub 2013 Aug 5.
10
Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century.
Lab Invest. 2013 Sep;93(9):970-82. doi: 10.1038/labinvest.2013.92. Epub 2013 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验