Suppr超能文献

真菌代谢产物的内源性相互作用。

Endogenous cross-talk of fungal metabolites.

作者信息

Sheridan Kevin J, Dolan Stephen K, Doyle Sean

机构信息

Department of Biology, Maynooth University Maynooth, Ireland.

出版信息

Front Microbiol. 2015 Jan 5;5:732. doi: 10.3389/fmicb.2014.00732. eCollection 2014.

Abstract

Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite.

摘要

真菌中的非核糖体肽(NRP)合成需要源源不断地供应蛋白质原性和非蛋白质原性氨基酸,这些氨基酸随后通过NRP合成酶催化的硫酯模板机制掺入新生的NRP中。底物氨基酸可以在掺入NRP之前或期间进行修饰,或者在掺入含氨基酸的早期生物合成中间体之后进行修饰。这些掺入后修饰涉及一系列额外的酶活性,包括但不限于单加氧酶、甲基转移酶、差向异构酶、氧化还原酶和谷胱甘肽S-转移酶,这些酶对于最终NRP的生物合成至关重要。同样,聚酮化合物的生物合成直接由聚酮化合物合酶巨型酶和簇编码的辅助修饰酶进行。此外,NRP和聚酮化合物合成(PKS)还需要一系列额外的初级代谢产物,例如:辅酶A(CoA)、乙酰辅酶A、S-腺苷甲硫氨酸、谷胱甘肽(GSH)、NADPH、丙二酰辅酶A和分子氧等。显然,这些过程必须进行精确的协调,以促进不同类型的NRP、聚酮化合物以及需要相同或相似生物合成前体或辅因子的相关代谢产物的同时生物合成。此外,给定家族中许多天然产物的结构几乎相同(例如麦角生物碱),以及在真菌内定位于相似区域(例如分生孢子),这表明在生物合成和功能方面可能存在相互作用。最后,我们推测NRP和PKS中涉及的某些生物合成步骤是否在细胞保护或环境适应中起作用,并想知道这些酶促反应对于最终代谢产物的实际生物合成是否具有同等重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c73d/4283610/e9335a35d974/fmicb-05-00732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验