Suppr超能文献

一种适用于大规模无线传感器网络的新型联合空间编码聚类干扰对齐方案。

A novel joint spatial-code clustered interference alignment scheme for large-scale wireless sensor networks.

作者信息

Wu Zhilu, Jiang Lihui, Ren Guanghui, Zhao Nan, Zhao Yaqin

机构信息

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China.

School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2015 Jan 16;15(1):1964-97. doi: 10.3390/s150101964.

Abstract

Interference alignment (IA) has been put forward as a promising technique which can mitigate interference and effectively increase the throughput of wireless sensor networks (WSNs). However, the number of users is strictly restricted by the IA feasibility condition, and the interference leakage will become so strong that the quality of service will degrade significantly when there are more users than that IA can support. In this paper, a novel joint spatial-code clustered (JSCC)-IA scheme is proposed to solve this problem. In the proposed scheme, the users are clustered into several groups so that feasible IA can be achieved within each group. In addition, each group is assigned a pseudo noise (PN) code in order to suppress the inter-group interference via the code dimension. The analytical bit error rate (BER) expressions of the proposed JSCC-IA scheme are formulated for the systems with identical and different propagation delays, respectively. To further improve the performance of the JSCC-IA scheme in asymmetric networks, a random grouping selection (RGS) algorithm is developed to search for better grouping combinations. Numerical results demonstrate that the proposed JSCC-IA scheme is capable of accommodating many more users to communicate simultaneously in the same frequency band with better performance.

摘要

干扰对齐(IA)作为一种有前途的技术被提出,它可以减轻干扰并有效提高无线传感器网络(WSN)的吞吐量。然而,用户数量受到IA可行性条件的严格限制,当用户数量超过IA所能支持的数量时,干扰泄漏会变得非常严重,以至于服务质量将显著下降。本文提出了一种新颖的联合空间码聚类(JSCC)-IA方案来解决这个问题。在所提出的方案中,用户被聚类成几个组,以便在每个组内实现可行的IA。此外,为每个组分配一个伪噪声(PN)码,以便通过码维度抑制组间干扰。分别针对具有相同和不同传播延迟的系统,推导了所提出的JSCC-IA方案的解析误码率(BER)表达式。为了进一步提高JSCC-IA方案在非对称网络中的性能,开发了一种随机分组选择(RGS)算法来搜索更好的分组组合。数值结果表明,所提出的JSCC-IA方案能够在同一频带内容纳更多用户同时通信,并且性能更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4122/4327112/10c135cf17a6/sensors-15-01964f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验