Suppr超能文献

传入小动脉中腺苷A3受体的鉴定及功能

Identification and function of adenosine A3 receptor in afferent arterioles.

作者信息

Lu Yan, Zhang Rui, Ge Ying, Carlstrom Mattias, Wang Shaohui, Fu Yiling, Cheng Liang, Wei Jin, Roman Richard J, Wang Lei, Gao Xichun, Liu Ruisheng

机构信息

Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi;

Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;

出版信息

Am J Physiol Renal Physiol. 2015 May 1;308(9):F1020-5. doi: 10.1152/ajprenal.00422.2014. Epub 2015 Jan 21.

Abstract

Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.

摘要

腺苷在肾微循环调节中发挥重要作用。已在肾脏中发现腺苷的所有受体,即A1、A2A、A2B和A3受体。然而,关于A3受体在肾脏中的定位和功能知之甚少。本研究确定了A3受体在介导传入小动脉(Af-Art)反应中的表达和作用,并研究了A3受体与Af-Art上的血管紧张素II(ANG II)、A1和A2受体之间的相互作用。我们发现,在显微解剖分离的Af-Art中表达了A3受体,且A3受体的mRNA水平为A1的59%。在分离的显微灌注Af-Art中,A3受体激动剂IB-MECA没有收缩作用。A3受体的激活使去甲肾上腺素预收缩的Af-Art舒张,并且分别减弱了腺苷A1受体激活和ANG II对Af-Art的血管收缩作用。选择性A2受体拮抗剂(A2A和A2B均包括)对A3受体激动剂诱导的血管舒张没有影响,表明A3受体激活的舒张作用不是由A2受体激活介导的。我们得出结论,A3受体在Af-Art中表达,且A3受体的激活使Af-Art舒张。

相似文献

1
Identification and function of adenosine A3 receptor in afferent arterioles.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F1020-5. doi: 10.1152/ajprenal.00422.2014. Epub 2015 Jan 21.
2
Stimulation of the adenosine A3 receptor, not the A1 or A2 receptors, promote neurite outgrowth of retinal ganglion cells.
Exp Eye Res. 2018 May;170:160-168. doi: 10.1016/j.exer.2018.02.019. Epub 2018 Feb 24.
3
Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse.
Kidney Int. 2009 Apr;75(8):793-9. doi: 10.1038/ki.2008.684. Epub 2009 Jan 21.
5
A1 adenosine receptor negatively modulates coronary reactive hyperemia via counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts.
Am J Physiol Heart Circ Physiol. 2013 Dec 1;305(11):H1668-79. doi: 10.1152/ajpheart.00495.2013. Epub 2013 Sep 16.
6
Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer.
J Cell Physiol. 2018 Mar;233(3):2032-2057. doi: 10.1002/jcp.25873. Epub 2017 May 3.
7
[Effect of adenosine on isolated afferent arterioles].
Nihon Jinzo Gakkai Shi. 1999 Oct;41(7):697-703.
8
Glucose dilates renal afferent arterioles via glucose transporter-1.
Am J Physiol Renal Physiol. 2018 Jul 1;315(1):F123-F129. doi: 10.1152/ajprenal.00409.2017. Epub 2018 Mar 7.
9
Functional and RNA expression profile of adenosine receptor subtypes in mouse mesenteric arteries.
J Cardiovasc Pharmacol. 2013 Jan;61(1):70-6. doi: 10.1097/FJC.0b013e318278575e.

引用本文的文献

1
Gene expression pattern of adenosine receptors in lung tumors.
Cancer Rep (Hoboken). 2023 Mar;6(3):e1747. doi: 10.1002/cnr2.1747. Epub 2022 Oct 25.
2
Adenosine receptors as emerging therapeutic targets for diabetic kidney disease.
Kidney Res Clin Pract. 2022 Sep;41(Suppl 2):S74-S88. doi: 10.23876/j.krcp.22.011. Epub 2022 Aug 22.
3
Purinoceptor: a novel target for hypertension.
Purinergic Signal. 2023 Mar;19(1):185-197. doi: 10.1007/s11302-022-09852-8. Epub 2022 Feb 18.
4
Adenosine A receptor and vascular response: role of soluble epoxide hydrolase, adenosine A receptor and angiotensin-II.
Mol Cell Biochem. 2021 May;476(5):1965-1978. doi: 10.1007/s11010-021-04049-w. Epub 2021 Jan 28.
5
Purinoceptors, renal microvascular function and hypertension.
Physiol Res. 2020 Jul 16;69(3):353-369. doi: 10.33549/physiolres.934463. Epub 2020 Apr 17.
6
Aging Impairs Renal Autoregulation in Mice.
Hypertension. 2020 Feb;75(2):405-412. doi: 10.1161/HYPERTENSIONAHA.119.13588. Epub 2019 Dec 16.
7
NaHCO Dilates Mouse Afferent Arteriole Via Na/HCO Cotransporters NBCs.
Hypertension. 2019 Nov;74(5):1104-1112. doi: 10.1161/HYPERTENSIONAHA.119.13235. Epub 2019 Sep 16.
8
Glucose dilates renal afferent arterioles via glucose transporter-1.
Am J Physiol Renal Physiol. 2018 Jul 1;315(1):F123-F129. doi: 10.1152/ajprenal.00409.2017. Epub 2018 Mar 7.
9
Adenosine A receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels.
Am J Physiol Renal Physiol. 2017 Dec 1;313(6):F1216-F1222. doi: 10.1152/ajprenal.00335.2017. Epub 2017 Aug 30.

本文引用的文献

1
The vasodilatory effect of testosterone on renal afferent arterioles.
Gend Med. 2012 Apr;9(2):103-11. doi: 10.1016/j.genm.2012.02.003. Epub 2012 Mar 22.
2
Adenosine A₁-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment.
Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1669-81. doi: 10.1152/ajpregu.00268.2011. Epub 2011 Oct 5.
3
Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F457-64. doi: 10.1152/ajprenal.00567.2010. Epub 2010 Nov 24.
4
Adenosine A(2) receptors modulate tubuloglomerular feedback.
Am J Physiol Renal Physiol. 2010 Aug;299(2):F412-7. doi: 10.1152/ajprenal.00211.2010. Epub 2010 Jun 2.
5
Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation.
Am J Physiol Renal Physiol. 2010 Aug;299(2):F310-5. doi: 10.1152/ajprenal.00149.2010. Epub 2010 May 12.
6
Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse.
Kidney Int. 2009 Apr;75(8):793-9. doi: 10.1038/ki.2008.684. Epub 2009 Jan 21.
7
Nitric oxide deficiency and increased adenosine response of afferent arterioles in hydronephrotic mice with hypertension.
Hypertension. 2008 May;51(5):1386-92. doi: 10.1161/HYPERTENSIONAHA.108.111070. Epub 2008 Apr 7.
8
Adenosine and kidney function.
Physiol Rev. 2006 Jul;86(3):901-40. doi: 10.1152/physrev.00031.2005.
10
Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice.
Am J Physiol Renal Physiol. 2006 Apr;290(4):F888-91. doi: 10.1152/ajprenal.00381.2005. Epub 2005 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验