Suppr超能文献

糖原合酶激酶3α调节小鼠的尿液浓缩机制。

Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice.

作者信息

Nørregaard Rikke, Tao Shixin, Nilsson Line, Woodgett James R, Kakade Vijayakumar, Yu Alan S L, Howard Christiana, Rao Reena

机构信息

Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark;

The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas.

出版信息

Am J Physiol Renal Physiol. 2015 Mar 15;308(6):F650-60. doi: 10.1152/ajprenal.00516.2014. Epub 2015 Jan 21.

Abstract

In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus.

摘要

在哺乳动物中,糖原合酶激酶(GSK)3由GSK3α和GSK3β亚型组成。已表明GSK3β通过调节抗利尿激素介导的集合管水通透性,在肾脏浓缩尿液的能力中发挥作用,而GSK3α的作用尚待明确。为了研究GSK3α在尿液浓缩中的作用,我们将GSK3α基因敲除(GSK3αKO)小鼠与野生型(WT)同窝小鼠进行了比较。在正常条件下,GSK3αKO小鼠的水摄入量和尿量更高。GSK3αKO小鼠还表现出尿渗透压和水通道蛋白-2水平降低,但尿抗利尿激素水平升高。当缺水时,它们无法将尿液浓缩到与WT同窝小鼠相同的水平。向分离的髓质内集合管中添加1-去氨基-8-D-精氨酸抗利尿激素可增加WT小鼠的环磷酸腺苷(cAMP)反应,但在GSK3αKO小鼠中这种反应减弱,表明对抗利尿激素的反应性降低。在mpkCCD细胞中对GSK3α进行基因沉默也降低了福斯高林诱导的水通道蛋白-2表达。用氯化锂(一种GSK3的亚型非选择性抑制剂和已知的多尿诱导剂)处理时,WT小鼠在6天内出现明显的多尿。然而,在GSK3αKO小鼠中,多尿反应明显减弱。这项研究首次证明,GSK3α可能在肾脏尿液浓缩中起关键作用,并表明GSK3α可能是氯化锂诱导的肾性尿崩症中锂(Li⁺)的初始靶点之一。

相似文献

1
Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice.
Am J Physiol Renal Physiol. 2015 Mar 15;308(6):F650-60. doi: 10.1152/ajprenal.00516.2014. Epub 2015 Jan 21.
2
GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity.
J Am Soc Nephrol. 2010 Mar;21(3):428-37. doi: 10.1681/ASN.2009060672. Epub 2010 Jan 7.
3
Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria.
Am J Physiol Renal Physiol. 2005 Apr;288(4):F642-9. doi: 10.1152/ajprenal.00287.2004. Epub 2004 Dec 7.
4
Glycogen synthase kinase-3 regulation of urinary concentrating ability.
Curr Opin Nephrol Hypertens. 2012 Sep;21(5):541-6. doi: 10.1097/MNH.0b013e32835571d4.
5
6
Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.
Kidney Int. 2015 Jun;87(6):1164-75. doi: 10.1038/ki.2014.427. Epub 2015 Jan 28.

引用本文的文献

1
Glycogen synthase kinase 3β: a key player in progressive chronic kidney disease.
Clin Sci (Lond). 2025 Jun 17;139(12):605-25. doi: 10.1042/CS20245219.
2
Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease.
J Am Soc Nephrol. 2025 Mar 1;36(3):378-392. doi: 10.1681/ASN.0000000528. Epub 2024 Oct 14.
3
GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model.
Int J Mol Sci. 2024 Jul 29;25(15):8263. doi: 10.3390/ijms25158263.
4
Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney.
Am J Physiol Renal Physiol. 2024 Jan 1;326(1):F69-F85. doi: 10.1152/ajprenal.00144.2023. Epub 2023 Oct 19.
5
Myofibroblast depletion reduces kidney cyst growth and fibrosis in autosomal dominant polycystic kidney disease.
Kidney Int. 2023 Jan;103(1):144-155. doi: 10.1016/j.kint.2022.08.036. Epub 2022 Oct 20.
7
The tyrosine-kinase inhibitor Nintedanib ameliorates autosomal-dominant polycystic kidney disease.
Cell Death Dis. 2021 Oct 14;12(10):947. doi: 10.1038/s41419-021-04248-9.
8
Glycogen synthase kinase-3β inhibits tubular regeneration in acute kidney injury by a FoxM1-dependent mechanism.
FASEB J. 2020 Oct;34(10):13597-13608. doi: 10.1096/fj.202000526RR. Epub 2020 Aug 19.
9
Advances in Autosomal Dominant Polycystic Kidney Disease: A Clinical Review.
Kidney Med. 2020 Feb 22;2(2):196-208. doi: 10.1016/j.xkme.2019.11.009. eCollection 2020 Mar-Apr.
10
Epithelial Vasopressin Type-2 Receptors Regulate Myofibroblasts by a YAP-CCN2-Dependent Mechanism in Polycystic Kidney Disease.
J Am Soc Nephrol. 2020 Aug;31(8):1697-1710. doi: 10.1681/ASN.2020020190. Epub 2020 Jun 17.

本文引用的文献

1
Lithium causes G2 arrest of renal principal cells.
J Am Soc Nephrol. 2014 Mar;25(3):501-10. doi: 10.1681/ASN.2013090988. Epub 2014 Jan 9.
2
Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1201-8. doi: 10.1152/ajprenal.00153.2013. Epub 2013 Jul 24.
3
GSK-3α is a central regulator of age-related pathologies in mice.
J Clin Invest. 2013 Apr;123(4):1821-32. doi: 10.1172/JCI64398. Epub 2013 Mar 15.
5
Glycogen synthase kinase-3 regulation of urinary concentrating ability.
Curr Opin Nephrol Hypertens. 2012 Sep;21(5):541-6. doi: 10.1097/MNH.0b013e32835571d4.
6
Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1.
Am J Physiol Renal Physiol. 2012 Aug 1;303(3):F420-30. doi: 10.1152/ajprenal.00060.2012. Epub 2012 May 23.
7
In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac.
Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1395-401. doi: 10.1152/ajprenal.00376.2011. Epub 2012 Mar 14.
8
GSK-3: Functional Insights from Cell Biology and Animal Models.
Front Mol Neurosci. 2011 Nov 16;4:40. doi: 10.3389/fnmol.2011.00040. eCollection 2011.
9
Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase-3β-positive epithelium.
Am J Physiol Renal Physiol. 2012 Feb 15;302(4):F455-65. doi: 10.1152/ajprenal.00144.2011. Epub 2011 Nov 16.
10
Lithium reduces aquaporin-2 transcription independent of prostaglandins.
Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C131-40. doi: 10.1152/ajpcell.00197.2011. Epub 2011 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验