CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
Environ Sci Pollut Res Int. 2015 Jul;22(13):9617-25. doi: 10.1007/s11356-015-4125-3. Epub 2015 Jan 24.
Having multidisciplinary applications, iron oxide nanoparticles can inevitably enter aquatic system and impact inhabitants such as fish. However, the studies in this context have ignored the significance of obvious interaction of iron oxide nanoparticles with other persistent co-contaminants such as mercury (Hg) in the modulation of the toxicity and underlying mechanisms of iron oxide nanoparticles and Hg alone, and concomitant exposures. This study aimed to evaluate lipid peroxidation (LPO) and its control with glutathione (GSH) and associated enzymes (such as glutathione reductase, GR; glutathione peroxidase, GPX; glutathione sulfo-transferase, GST) in European eel (Anguilla anguilla L.) hepatocytes exposed to stressors with following schemes: (i) no silica-coated iron oxide nanoparticles functionalized with dithiocarbamate (Fe3O4@SiO2/Si DTC, hereafter called 'FeNPs'; size range 82 ± 21 to 100 ± 30 nm) or Hg, (ii) FeNPs (2.5 μg L(-1)) alone, (iii) Hg (50 μg L(-1)) alone and (iv) FeNPs + Hg concomitant condition during 0 to 72 h. The exhibition of a differential coordination between GSH regeneration (determined as GR activity) and GSH metabolism (determined as the activity of GPX and GST) was perceptible in A. anguilla hepatocytes in order to control FeNPs, Hg and FeNPs + Hg exposure condition-mediated LPO. This study revealed the significance of a fine tuning among GR, GPX and GST in keeping LPO level under control during FeNPs or Hg alone exposure, and a direct role of total GSH (TGSH) in the control of LPO level and impaired GSH metabolism under the concomitant (FeNPs + Hg) exposure. An interpretation of the fish risk to FeNPs in a multi-pollution state should equally consider the potential outcome of the interaction of FeNPs with other contaminants.
具有多学科应用的氧化铁纳米颗粒不可避免地会进入水生系统,并影响鱼类等居民。然而,在这方面的研究忽略了氧化铁纳米颗粒与其他持久性共存污染物(如汞(Hg))之间明显相互作用的重要性,这种相互作用在单独的氧化铁纳米颗粒和 Hg 以及同时暴露的毒性和潜在机制的调节中。本研究旨在评估欧洲鳗鱼(Anguilla anguilla L.)肝细胞中脂质过氧化 (LPO) 及其控制与谷胱甘肽 (GSH) 和相关酶(如谷胱甘肽还原酶、GR;谷胱甘肽过氧化物酶、GPX;谷胱甘肽硫转移酶、GST)的关系,实验采用以下方案:(i)无二氧化硅涂层的二硫代氨基甲酸盐功能化氧化铁纳米颗粒(Fe3O4@SiO2/Si DTC,以下简称“FeNPs”;粒径范围 82±21 至 100±30nm)或 Hg,(ii)FeNPs(2.5μg L(-1))单独,(iii)Hg(50μg L(-1))单独和(iv)FeNPs+Hg 同时暴露条件下 0 至 72h。为了控制 LPO,A. anguilla 肝细胞中可明显观察到 GSH 再生(通过 GR 活性确定)和 GSH 代谢(通过 GPX 和 GST 活性确定)之间的差异协调。本研究揭示了在单独暴露于 FeNPs 或 Hg 时,GR、GPX 和 GST 之间精细调节以控制 LPO 水平的重要性,以及在同时(FeNPs+Hg)暴露下总谷胱甘肽 (TGSH) 在控制 LPO 水平和受损 GSH 代谢中的直接作用。在多污染状态下,对鱼类接触 FeNPs 的风险的解释应同样考虑到 FeNPs 与其他污染物相互作用的潜在结果。
Environ Sci Pollut Res Int. 2015-1-24
Environ Sci Pollut Res Int. 2017-1
Environ Sci Pollut Res Int. 2017-1
Environ Sci Pollut Res Int. 2013-1-20
Biomaterials. 2009-8
Antioxid Redox Signal. 2002-6
Ecotoxicol Environ Saf. 1996-10