Magkiriadou Sofia, Park Jin-Gyu, Kim Young-Seok, Manoharan Vinothan N
Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138.
School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062302. doi: 10.1103/PhysRevE.90.062302. Epub 2014 Dec 3.
Colloidal glasses, bird feathers, and beetle scales can all show structural colors arising from short-ranged spatial correlations between scattering centers. Unlike the structural colors arising from Bragg diffraction in ordered materials like opals, the colors of these photonic glasses are independent of orientation, owing to their disordered, isotropic microstructures. However, there are few examples of photonic glasses with angle-independent red colors in nature, and colloidal glasses with particle sizes chosen to yield structural colors in the red show weak color saturation. Using scattering theory, we show that the absence of angle-independent red color can be explained by the tendency of individual particles to backscatter light more strongly in the blue. We discuss how the backscattering resonances of individual particles arise from cavity-like modes and how they interact with the structural resonances to prevent red. Finally, we use the model to develop design rules for colloidal glasses with red, angle-independent structural colors.
胶体玻璃、鸟羽和甲虫鳞片都能呈现出由散射中心之间的短程空间相关性产生的结构色。与蛋白石等有序材料中由布拉格衍射产生的结构色不同,这些光子玻璃的颜色与取向无关,这归因于它们无序、各向同性的微观结构。然而,自然界中几乎没有具有角度无关红色的光子玻璃实例,并且选择产生红色结构色的粒径的胶体玻璃显示出较弱的颜色饱和度。利用散射理论,我们表明角度无关红色的缺失可以通过单个粒子在蓝光中更强地背向散射光的趋势来解释。我们讨论了单个粒子的背向散射共振如何由类似腔的模式产生,以及它们如何与结构共振相互作用以阻止产生红色。最后,我们使用该模型为具有红色、角度无关结构色的胶体玻璃制定设计规则。