Quan Shuai, Tang Yu Pan, Wang Zhen Xing, Jiang Zai Xing, Wang Rong Guo, Liu Yu Yan, Shao Lu
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, P.R. China.
Macromol Rapid Commun. 2015 Mar;36(5):490-5. doi: 10.1002/marc.201400633. Epub 2015 Jan 26.
Low-molecular-weight poly(ethylene glycol) (PEG) is deliberately incorporated into synthesized swellable poly(ethylene oxide) (PEO) membranes via a facile post-treatment strategy. The membranes exhibit both larger fractional free volume (FFV) and a higher content of CO2-philic building units, resulting in significant increments in both CO2 permeability and CO2/H2 selectivity. The separation performance correlates nicely with the microstructure of the membranes. This study may provide useful insights in the formation and mass transport behavior of highly efficient polymeric membranes applicable to clean energy purification and CO2 capture, and possibly bridge the material-induced technology gap between academia and industry.
通过一种简便的后处理策略,将低分子量聚乙二醇(PEG)有意引入合成的可膨胀聚环氧乙烷(PEO)膜中。这些膜表现出更大的自由体积分数(FFV)和更高含量的亲二氧化碳结构单元,从而导致二氧化碳渗透率和二氧化碳/氢气选择性都显著提高。分离性能与膜的微观结构密切相关。该研究可能为适用于清洁能源净化和二氧化碳捕获的高效聚合物膜的形成和传质行为提供有用的见解,并有可能弥合学术界和工业界之间由材料引起的技术差距。