Suppr超能文献

用μ-芋螺毒素和最近发现的μO§-芋螺毒素GVIIJ研究电压门控钠通道的α亚基和β亚基组成。

Α- and β-subunit composition of voltage-gated sodium channels investigated with μ-conotoxins and the recently discovered μO§-conotoxin GVIIJ.

作者信息

Wilson Michael J, Zhang Min-Min, Gajewiak Joanna, Azam Layla, Rivier Jean E, Olivera Baldomero M, Yoshikami Doju

机构信息

Department of Biology, University of Utah, Salt Lake City, Utah; and.

The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2289-301. doi: 10.1152/jn.01004.2014. Epub 2015 Jan 28.

Abstract

We investigated the identities of the isoforms of the α (NaV1)- and β (NaVβ)-subunits of voltage-gated sodium channels, including those responsible for action potentials in rodent sciatic nerves. To examine α-subunits, we used seven μ-conotoxins, which target site 1 of the channel. With the use of exogenously expressed channels, we show that two of the μ-conotoxins, μ-BuIIIB and μ-SxIIIA, are 50-fold more potent in blocking NaV1.6 from mouse than that from rat. Furthermore, we observed that μ-BuIIIB and μ-SxIIIA are potent blockers of large, myelinated A-fiber compound action potentials (A-CAPs) [but not small, unmyelinated C-fiber CAPs (C-CAPs)] in the sciatic nerve of the mouse (unlike A-CAPs of the rat, previously shown to be insensitive to these toxins). To investigate β-subunits, we used two synthetic derivatives of the recently discovered μO§-conotoxin GVIIJ that define site 8 of the channel, as previously characterized with cloned rat NaV1- and NaVβ-subunits expressed in Xenopus laevis oocytes, where it was shown that μO§-GVIIJ is a potent inhibitor of several NaV1-isoforms and that coexpression of NaVβ2 or -β4 (but not NaVβ1 or -β3) totally protects against block by μO§-GVIIJ. We report here the effects of μO§-GVIIJ on 1) sodium currents of mouse NaV1.6 coexpressed with various combinations of NaVβ-subunits in oocytes; 2) A- and C-CAPs of mouse and rat sciatic nerves; and 3) sodium currents of small and large neurons dissociated from rat dorsal root ganglia. Our overall results lead us to conclude that action potentials in A-fibers of the rodent sciatic nerve are mediated primarily by NaV1.6 associated with NaVβ2 or NaVβ4.

摘要

我们研究了电压门控钠通道α(NaV1)亚基和β(NaVβ)亚基的亚型,包括那些在啮齿动物坐骨神经动作电位中起作用的亚型。为了检测α亚基,我们使用了七种μ-芋螺毒素,它们作用于通道的位点1。通过使用外源性表达的通道,我们发现其中两种μ-芋螺毒素,即μ-BuIIIB和μ-SxIIIA,对小鼠NaV1.6的阻断效力比对大鼠的高50倍。此外,我们观察到μ-BuIIIB和μ-SxIIIA是小鼠坐骨神经中大型有髓鞘A纤维复合动作电位(A-CAPs)的有效阻断剂[但不是小型无髓鞘C纤维CAPs(C-CAPs)](与大鼠的A-CAPs不同,先前已证明大鼠的A-CAPs对这些毒素不敏感)。为了研究β亚基,我们使用了最近发现的μO§-芋螺毒素GVIIJ的两种合成衍生物,它们作用于通道的位点8,正如先前在非洲爪蟾卵母细胞中表达的克隆大鼠NaV1和NaVβ亚基所表征的那样,结果表明μO§-GVIIJ是几种NaV1亚型的有效抑制剂,并且NaVβ2或-NaVβ4(而非NaVβ1或-NaVβ3)的共表达能完全防止μO§-GVIIJ的阻断。我们在此报告μO§-GVIIJ对以下方面的影响:1)在卵母细胞中与各种NaVβ亚基组合共表达的小鼠NaV1.6的钠电流;2)小鼠和大鼠坐骨神经的A-和C-CAPs;3)从大鼠背根神经节分离的小型和大型神经元的钠电流。我们的总体结果使我们得出结论,啮齿动物坐骨神经A纤维中的动作电位主要由与NaVβ2或NaVβ4相关的NaV1.6介导。

相似文献

2
Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ.
J Biol Chem. 2016 Mar 25;291(13):7205-20. doi: 10.1074/jbc.M115.697672. Epub 2016 Jan 27.
3
Navβ subunits modulate the inhibition of Nav1.8 by the analgesic gating modifier μO-conotoxin MrVIB.
J Pharmacol Exp Ther. 2011 Aug;338(2):687-93. doi: 10.1124/jpet.110.178343. Epub 2011 May 17.
4
Probing the Redox States of Sodium Channel Cysteines at the Binding Site of μO§-Conotoxin GVIIJ.
Biochemistry. 2015 Jun 30;54(25):3911-20. doi: 10.1021/acs.biochem.5b00390. Epub 2015 Jun 18.
6
A disulfide tether stabilizes the block of sodium channels by the conotoxin μO§-GVIIJ.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2758-63. doi: 10.1073/pnas.1324189111. Epub 2014 Feb 4.
9
μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10302-7. doi: 10.1073/pnas.1107027108. Epub 2011 Jun 7.
10
muO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2.
Channels (Austin). 2007 Jul-Aug;1(4):253-62. doi: 10.4161/chan.4847. Epub 2007 Aug 7.

引用本文的文献

1
Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan 11. doi: 10.1007/s00210-024-03667-7.
2
Conotoxins Targeting Voltage-Gated Sodium Ion Channels.
Pharmacol Rev. 2024 Aug 15;76(5):828-845. doi: 10.1124/pharmrev.123.000923.
3
Sodium Channel β Subunits-An Additional Element in Animal Tetrodotoxin Resistance?
Int J Mol Sci. 2024 Jan 25;25(3):1478. doi: 10.3390/ijms25031478.
6
Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease.
Neuropharmacology. 2018 Apr;132:43-57. doi: 10.1016/j.neuropharm.2017.09.018. Epub 2017 Sep 18.
7
Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves.
J Pharmacol Exp Ther. 2017 Apr;361(1):172-180. doi: 10.1124/jpet.116.238469. Epub 2017 Jan 30.
8
Binary architecture of the Nav1.2-β2 signaling complex.
Elife. 2016 Feb 19;5:e10960. doi: 10.7554/eLife.10960.
9
Glycine-rich conotoxins from the Virgiconus clade.
Toxicon. 2016 Apr;113:11-7. doi: 10.1016/j.toxicon.2016.02.001. Epub 2016 Feb 4.
10
The hitchhiker's guide to the voltage-gated sodium channel galaxy.
J Gen Physiol. 2016 Jan;147(1):1-24. doi: 10.1085/jgp.201511492.

本文引用的文献

1
FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons.
Elife. 2014 Sep 30;3:e04193. doi: 10.7554/eLife.04193.
2
Resurgent current of voltage-gated Na(+) channels.
J Physiol. 2014 Nov 15;592(22):4825-38. doi: 10.1113/jphysiol.2014.277582. Epub 2014 Aug 28.
4
A disulfide tether stabilizes the block of sodium channels by the conotoxin μO§-GVIIJ.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2758-63. doi: 10.1073/pnas.1324189111. Epub 2014 Feb 4.
5
Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit.
PLoS One. 2014 Jan 3;9(1):e85188. doi: 10.1371/journal.pone.0085188. eCollection 2014.
6
Crystallographic insights into sodium-channel modulation by the β4 subunit.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5016-24. doi: 10.1073/pnas.1314557110. Epub 2013 Dec 2.
7
Structure and function of voltage-gated sodium channels at atomic resolution.
Exp Physiol. 2014 Jan;99(1):35-51. doi: 10.1113/expphysiol.2013.071969. Epub 2013 Oct 4.
8
β1- and β3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells.
Front Cell Neurosci. 2013 Aug 30;7:137. doi: 10.3389/fncel.2013.00137. eCollection 2013.
9
Na+ channel-dependent recruitment of Navβ4 to axon initial segments and nodes of Ranvier.
J Neurosci. 2013 Apr 3;33(14):6191-202. doi: 10.1523/JNEUROSCI.4051-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验