Laboratory of Organic Chemistry and ‡Laboratory of Physical Chemistry, ETH Zurich , Zurich CH-8093, Switzerland.
J Am Chem Soc. 2015 Feb 25;137(7):2524-35. doi: 10.1021/ja510109p. Epub 2015 Feb 16.
Conversion of soluble folded proteins into insoluble amyloids generally proceeds in three distinct mechanistic stages: (1) initial protein misfolding into aggregation-competent conformers, (2) subsequent formation of oligomeric species and, finally, (3) self-assembly into extended amyloid fibrils. In the work reported herein, we interrogated the amyloidogenesis mechanism of human β2-microglobulin (β2m), which is thought to be triggered by a pivotal cis-trans isomerization of a proline residue at position 32 in the polypeptide, with nonstandard amino acids. Using chemical protein synthesis we prepared a β2m analogue in which Pro32 was replaced by the conformationally constrained amino acid α-methylproline (MePro). The strong propensity of MePro to adopt a trans prolyl bond led to enhanced population of a non-native [trans-MePro32]β2m protein conformer, which readily formed oligomers at neutral pH. In the presence of the antibiotic rifamycin SV, which inhibits amyloid growth of wild-type β2m, [MePro32]β2m was nearly quantitatively converted into different spherical oligomeric species. Self-assembly into amyloid fibrils was not observed in the absence of seeding, however, even at low pH (<3), where wild-type β2m spontaneously forms amyloids. Nevertheless, we found that aggregation-preorganized [MePro32]β2m can act in a prion-like fashion, templating misfolded conformations in a natively folded protein. Overall, these results provide detailed insight into the role of cis-trans isomerization of Pro32 and ensuing structural rearrangements that lead to initial β2m misfolding and aggregation. They corroborate the view that conformational protein dynamics enabled by reversible Pro32 cis-trans interconversion rather than simple population of the trans conformer is critical for both nucleation and subsequent growth of β2m amyloid structures.
(1)初始蛋白质错误折叠为具有聚集能力的构象,(2)随后形成寡聚体,最后(3)自我组装成延伸的淀粉样纤维。在本文报告的工作中,我们研究了人类β2-微球蛋白(β2m)的淀粉样蛋白形成机制,据认为该机制是由多肽中第 32 位脯氨酸残基的关键顺式-反式异构化引发的,与非标准氨基酸有关。使用化学蛋白质合成,我们制备了一种β2m 类似物,其中 Pro32 被构象受限的氨基酸α-甲基脯氨酸(MePro)取代。MePro 强烈倾向于形成反式脯氨酸键,导致非天然[trans-MePro32]β2m 蛋白质构象的丰度增加,该构象在中性 pH 下容易形成寡聚体。在抗生素利福霉素 SV 的存在下,该抗生素抑制野生型β2m 的淀粉样蛋白生长,[MePro32]β2m 几乎定量转化为不同的球形寡聚体。然而,在没有接种的情况下,没有观察到自组装成淀粉样纤维,即使在低 pH(<3)下,野生型β2m 也会自发形成淀粉样纤维。然而,我们发现聚集预组织的[MePro32]β2m 可以以类朊病毒的方式发挥作用,在天然折叠的蛋白质中模板化错误折叠的构象。总的来说,这些结果提供了对 Pro32 顺式-反式异构化和随之而来的结构重排的详细了解,这些重排导致初始β2m 错误折叠和聚集。它们证实了这样一种观点,即由脯氨酸顺式-反式可逆互变赋予的构象蛋白动力学,而不是简单的反式构象丰度,对于β2m 淀粉样蛋白结构的成核和随后的生长都是至关重要的。